\(\cap\) B

Bài 2:

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 9 2020

1.

\(A\subset B\Leftrightarrow\left\{{}\begin{matrix}2m-1\le-1\\2m+3\ge1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\le0\\m\ge-1\end{matrix}\right.\) \(\Rightarrow-1\le m\le0\)

\(B\subset A\Leftrightarrow\left\{{}\begin{matrix}-1\le2m-1\\2m+3\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ge0\\m\le-1\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn yêu cầu

\(A\cap B\) nhưng bằng cái gì? Chỗ này đề thiếu

2.

a.

\(B\subset A\Leftrightarrow\left\{{}\begin{matrix}-4\le m-7\\m\le3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ge3\\m\le3\end{matrix}\right.\) \(\Leftrightarrow m=3\)

b.

\(A\cup B=A\Leftrightarrow B\subset A\Leftrightarrow\left\{{}\begin{matrix}m\ge-3\\m\le1\\-4\le-3\end{matrix}\right.\) \(\Rightarrow-3\le m\le1\)

c.

\(A\backslash B=\varnothing\Leftrightarrow A\subset B\Leftrightarrow\left\{{}\begin{matrix}m-1< 5\\m-1\ge3\end{matrix}\right.\) \(\Rightarrow4\le m< 6\)

29 tháng 9 2020

Thanks a lot!

Bài 1:Cho các tập hợp A=(-∞ ; m) và B=(3m-1; 3m+3) Tìm m để: a, \(A\cap B=\varnothing\)(đs m\(\ge\dfrac{1}{2}\)) b,\(B\subset A\)( đs m<\(\dfrac{-3}{2}\)) c,\(A\subset C_RB\)(đs m\(\ge\dfrac{1}{2}\)) d,\(C_RA\cap B\ne\varnothing\)( đs m \(\ge\dfrac{-3}{2}\)) Bài 2: Cho A=\(\left(-\infty;-2\right)\)và B=\(\left(2m+1;+\infty\right)\). Tìm m để A\(\cup\)B=R Bài 3: a, Tìm m để (1 ; m) \(\cap\) (2 ; +\(\infty\))\(\ne\varnothing\) b, Viết tập A gồm các phần...
Đọc tiếp

Bài 1:Cho các tập hợp A=(-∞ ; m) và B=(3m-1; 3m+3) Tìm m để:

a, \(A\cap B=\varnothing\)(đs m\(\ge\dfrac{1}{2}\))

b,\(B\subset A\)( đs m<\(\dfrac{-3}{2}\))

c,\(A\subset C_RB\)(đs m\(\ge\dfrac{1}{2}\))

d,\(C_RA\cap B\ne\varnothing\)( đs m \(\ge\dfrac{-3}{2}\))

Bài 2: Cho A=\(\left(-\infty;-2\right)\)và B=\(\left(2m+1;+\infty\right)\). Tìm m để A\(\cup\)B=R

Bài 3:

a, Tìm m để (1 ; m) \(\cap\) (2 ; +\(\infty\))\(\ne\varnothing\)

b, Viết tập A gồm các phần tử x thỏa mãn điều kiện\(\left\{{}\begin{matrix}x\le3\\x+1\ge\\x< 0\end{matrix}\right.0}\)

với x+1\(\ge0\)dưới dạng tập số.

Bài 4:

Cho A=(m;m+2) và B+(n;n+1). Tìm điều kiện của các số m và n để A\(\cap\)B=\(\varnothing\)

Bài 5:

Cho tập hợp A=\(\left(m-1;\dfrac{m+1}{2}\right)\)và B=\(\left(-\infty;-2\right)\cup\left(2;+\infty\right)\). Tìm m để:

a, \(A\cap B\ne\varnothing\)

b, \(A\subset B\)

c, \(B\subset A\)

d, \(A\cap B=\varnothing\)

Bài 6:Cho 2 tập khác rỗng: A=(m-1 ; 4) và B=(-2 ; 2m+2), với ác định m để:

a, A\(\cap B\ne\varnothing\)

b, A\(\subset B\)

c,\(B\subset A\)

1

Bài 6:

a: Để A giao B khác rỗng thì 2m+2<=4 hoặc m-1>=-2

=>m<=1 hoặc m>=-1

b: Để A là tập con của B thì m-1>-2 và 4<=2m+2

=>m>-1 và 2m+2>=4

=>m>-1 và m>=1

=>m>=1

c: Để B là tập con của B thì m-1<-2 và 2m+2<=4

=>m<-1 và m<=1

=>m<-1

NV
4 tháng 10 2020

1.

\(\left|mx-3\right|=mx-3\Leftrightarrow mx-3\ge0\)

\(\Leftrightarrow mx\ge3\)

\(x^2-4=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\) \(\Rightarrow B=\left\{-2;2\right\}\)

\(B\backslash A=B\Leftrightarrow A\cap B=\varnothing\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2m< 3\\2m< 3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>-\frac{3}{2}\\m< \frac{3}{2}\end{matrix}\right.\)

\(\Rightarrow-\frac{3}{2}< m< \frac{3}{2}\)

2.

\(A=\left(-\infty;-3\right)\cup\left(\sqrt{6};+\infty\right)\)

À thôi nhìn tập \(C_RB\) thấy kì kì

Đề là \(\left(-5;2\right)\cup\left(\sqrt{3};\sqrt{11}\right)\) hay \(\left(-5;-2\right)\cup\left(\sqrt{3};\sqrt{11}\right)\) vậy bạn?

Vì đề như bạn ghi thì \(2>\sqrt{3}\) nên \(\left(-5;2\right)\cup\left(\sqrt{3};\sqrt{11}\right)=\left(-5;\sqrt{11}\right)\) luôn còn gì, người ta ghi dạng hợp 2 khoảng làm gì nữa?

4 tháng 10 2020

Đề là (-5;2) \(\cup\) (\(\sqrt{3}\); \(\sqrt{11}\)) đó bạn!

NV
20 tháng 9 2020

\(A\cap B=\varnothing\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2m-3>m+1\\m+1\ge-1\\2m-3\le3\end{matrix}\right.\\\left\{{}\begin{matrix}2m-3>m+1\\m+1\ge5\\\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m>4\\m\ge-2\\m\le3\end{matrix}\right.\\\left\{{}\begin{matrix}m>4\\m\ge4\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>4\)