Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mik làm được 1 bài thôi . Tiếc quá mình sắp phải đi học rồi.
BÀi 12:
S=1 + 2 + 22 + `23 +..........+ 22017
2S=2 + 22 + `23 + 24 +..........+22017 + 22018
Trừ đi hai vế ta được:
S=1 + 22018
B1 : B-A = 1/2
B2 :
CM được : A = (4^100-1)/3
=> A < 4^100/3 = B/3
Tk mk nha
Bài 1 :
A = 1 + 3 + 32 + 33 + ....... + 320
\(\Rightarrow3A=3+3^2+3^3+3^4+......+3^{21}\)
\(\Rightarrow3A-A=\left(3+3^2+3^3+3^4+.....+3^{21}\right)-\left(1+3+3^2+3^3+......+3^{20}\right)\)
\(\Rightarrow2A=2+3^{21}\)
\(\Rightarrow A=\frac{2+3^{21}}{2}\)
\(\Rightarrow B-A=\left(2+3^{21}\right):2-3^{21}:2\)
\(\Rightarrow B-A=1+3^{21}:2-3^{21}:2\)
\(\Rightarrow B-A=1+\left(3^{21}:2-3^{21}:2\right)\)
\(\Rightarrow B-A=1+0\)
\(\Rightarrow B-A=1\)
Vậy \(B-A=1\)
Bài 2 :
\(A=1+4+4^2+4^3+.....+4^{99}\)
\(\Rightarrow4A=4+4^2+4^3+4^4+.....+4^{100}\)
\(\Rightarrow4A-A=\left(4+4^2+4^3+4^4+.....+4^{100}\right)-\left(1+4+4^2+4^3+......+4^{99}\right)\)
\(\Rightarrow3A=3+4^{100}\)
\(\Rightarrow A=\frac{3+4^{100}}{3}\)
\(\Rightarrow\frac{B}{3}=\frac{4^{100}}{3}\)
Vì \(4^{100}=4^{100}\)nên \(3+4^{100}>4^{100}\)
Vậy \(A>\frac{B}{3}\left(ĐPCM\right)\)
A=(2^1+2^2+2^3+2^4+2^5+2^6)+................+(2^2005+2^2006+2^2007+2^2008+2^2009+2^2010)
A=2^1(1+2+2^2+2^3+2^4+2^5)+...................+2^2005(1+2+2^2+2^3+2^4+2^5)
A=2.63+......................+2^2005.63
A=63.(2+..............................+2^2005)
VÌ 63 CHIA HẾT CHO 3 VÀ 7 VẬY A CHIA HẾT CHO 3 VÀ 7.
TICK CHO MÌNH NHA
Cho A = 1 + 3 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6 + 3^250
a)Tính 3A
3A = 3 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6 + 3^7 + 3^251
b) hơi khó
mình đang nghĩ ạ
A=(21+22+23+24+25+26) + . . . + (22005+22006+22007+22008+22009+22010)
A=2^1(1+2+22+23+24+25)+...................+22005(1+2+22+23+24+25)
A=2.63+......................+22005.63
A=63.(2+..............................+22005)
VÌ 63 CHIA HẾT CHO 3 VÀ 7 VẬY A CHIA HẾT CHO 3 VÀ 7.
1.
a.\(A=1+2^1+2^2+2^3+...+2^{2007}\)
\(2A=2+2^2+2^3+....+2^{2008}\)
b. \(A=\left(2+2^2+2^3+...+2^{2008}\right)-\left(1+2^1+2^2+..+2^{2007}\right)\)
\(=2^{2008}-1\) (bạn xem lại đề)
2.
\(A=1+3+3^1+3^2+...+3^7\)
a. \(2A=2+2.3+2.3^2+...+2.3^7\)
b.\(3A=3+3^2+3^3+...+3^8\)
\(2A=3^8-1\)
\(=>A=\dfrac{2^8-1}{2}\)
3
.\(B=1+3+3^2+..+3^{2006}\)
a. \(3B=3+3^2+3^3+...+3^{2007}\)
b. \(3B-B=2^{2007}-1\)
\(B=\dfrac{2^{2007}-1}{2}\)
4.
Sửa: \(C=1+4+4^2+4^3+4^4+4^5+4^6\)
a.\(4C=4+4^2+4^3+4^4+4^5+4^6+4^7\)
b.\(4C-C=4^7-1\)
\(C=\dfrac{4^7-1}{3}\)
5.
\(S=1+2+2^2+2^3+...+2^{2017}\)
\(2S=2+2^2+2^3+2^4+...+2^{2018}\)
\(S=2^{2018}-1\)
4:
a:Sửa đề: C=1+4+4^2+4^3+4^4+4^5+4^6
=>4*C=4+4^2+...+4^7
b: 4*C=4+4^2+...+4^7
C=1+4+...+4^6
=>3C=4^7-1
=>\(C=\dfrac{4^7-1}{3}\)
5:
2S=2+2^2+2^3+...+2^2018
=>2S-S=2^2018-1
=>S=2^2018-1