Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : Đồ thị đi qua điểm M(4;-3) \(\Rightarrow\) y=-3 x=4. Ta được:
\(-3=4a+b\)
Đồ thị song song với đường d \(\Rightarrow\) \(a=a'=-\dfrac{2}{3}\) Ta được:
\(-3=4.-\dfrac{2}{3}+b\) \(\Rightarrow\) \(b=-\dfrac{1}{3}\)
Vậy: \(a=-\dfrac{2}{3};b=-\dfrac{1}{3}\)
b) (P) đi qua 3 điểm A B O, thay tất cả vào (P), ta được hpt:
\(\hept{\begin{cases}a+b+c=1\\a-b-c=-3\\0+0+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=-1\\b=2\\c=0\end{cases}}}\)
Bài 2 : Mình ko biết vẽ trên này, bạn theo hướng dẫn rồi tự làm nhé
Đồ thị có \(a< 0\) \(\Rightarrow\) Hàm số nghịch biến trên R
\(\Rightarrow\) Đồ thị có đỉnh \(I\left(1;4\right)\)
Chọn các điểm:
x 1 3 -1 2 -2
y 4 0 0 3 -5
a) \(\left\{{}\begin{matrix}x=-5+4t\\y=-2-3t\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x=\sqrt{3}+2t\\y=1+3t\end{matrix}\right.\)
(a) phân giác trong y=-2 , phân giác ngoài x=2
(b) x=5
(c)x+15y+28=0
1: Vì (d)//Δ nên a=2
Vậy: (d): y=2x+b
Thay x=4 và y=3 vào (d), ta được:
b+8=3
hay b=-5
2: Vì (d') vuông góc (d) nên 1/3a=-1
hay a=-3
Vậy: (d'): y=-3x+b
Thay x=-2 và y=1 vào (d'),ta được:
b+6=1
hay b=-5
Bài 1:
a) PT $(d)$ có dạng:
$3(x-x_M)+(-2)(y-y_M)=0$
$\Leftrightarrow 3(x-3)-2(y+7)=0$
$\Leftrightarrow 3x-2y=23$
b) Vì (d) song song với $(d'): 3x-2y+1=0$ nên $(d)$ cũng nhận $(3,-2)$ là vecto pháp tuyến.
Khi đó đường thẳng $(d)$ có dạng như phần a.
c)
Do $(d)\perp (d')$ nên vecto chỉ phương của $(d')$ là $(2,-3)$ cũng là vecto pháp tuyến của $(d)$
$\Rightarrow \overrightarrow{n_d}=(2,-3)$
PTĐT $(d)$ có dạng: $2(x-x_M)-3(y-y_M)=0$
$\Leftrightarrow 2(x-3)-3(y+7)=0\Leftrightarrow 2x-3y=27$
Bài 2:
a) \(\overrightarrow{AB}=(4,3)\Rightarrow \overrightarrow{n_{AB}}=(-3,4)\)
PTĐT $AB$: $-3(x-x_A)+4(y-y_A)=0$
$\Leftrightarrow -3(x+1)+4(y-2)=0$
$\Leftrightarrow -3x+4y-11=0$
b) ĐT cần tìm vuông góc với $AB$ nên nhận \(\overrightarrow{AB}=(4,3)\) là VTPT.
PTĐT cần tìm có dạng:
\(4(x-x_A)+3(y-y_A)=0\)
\(\Leftrightarrow 4(x+1)+3(y-2)=0\Leftrightarrow 4x+3y-2=0\)
c) ĐT cần tìm là trung trực của $AB$ nên nhận \(\overrightarrow{AB}=(4,3)\) là vecto pháp tuyến và đi qua trung điểm $M$ có tọa độ $(\frac{x_A+x_B}{2}, \frac{y_A+y_B}{2})=(1, \frac{7}{2})$
Do đó ĐT cần tìm có dạng:
$4(x-x_M)+3(y-y_M)=0$
$\Leftrightarrow 4(x-1)+3(y-\frac{7}{2})=0$
$\Leftrightarrow 8x+6y=29$
d) ĐT song song với $AB$ nên VTPT của nó cũng chính là VTPT của $AB$ và bằng $(-3,4)$
PTĐT cần tìm có dạng:
$-3(x-x_O)+4(y-y_O)=0$
$\Leftrightarrow -3x+4y=0$
a. \(2x+3y-7=0\)
b. \(3x-2y-4=0\)
c. Đường thẳng d có hệ số góc \(k=-\frac{2}{3}\), do đó d không tạo với trục hoành góc \(45^0\). Suy ra đường thẳng \(\Delta\) cần tìm, tạo với d góc \(45^0\), không có phương vuông góc với Ox. Gọi \(l\) là hệ số góc của \(\Delta\) , do góc giữa d và \(\Delta\) bằng \(45^0\) nên ta có phương trình :
\(\left|\frac{l+\frac{2}{3}}{1-\frac{2l}{3}}\right|=1\Leftrightarrow\left|3l+2\right|=\left|3-2l\right|\)
Giải phương trình ta thu được :
\(l=\frac{1}{5}\) hoặc \(l=-5\)
* Với \(l=\frac{1}{5}\), ta được \(\Delta:x-5y+3=0\)
* Với \(l=-5\) ta được \(\Delta:5x+y-11=0\)
d. Đường thẳng t cần tìm có vecto pháp tuyến \(\overrightarrow{n}=\left(a;b\right);\left(a^2+b^2\ne0\right)\)
Do góc (t;d) = \(\alpha\) mà \(\cos\alpha=\frac{2}{\sqrt{13}}\) nên ta có phương trình :
\(\frac{\left|2a+3b\right|}{\sqrt{13}.\sqrt{a^2+b^2}}=\frac{2}{\sqrt{13}}\Leftrightarrow\left|2a+3b\right|=2\sqrt{a^2+b^2}\)
\(\Leftrightarrow b\left(12a+5b\right)=0\)
- Nếu \(b=0\) thì \(a\ne0\), tùy ý và do đó ta có đường thẳng \(t:x-2=0\)
- Nếu \(12a+5b=0\) do \(a^2+b^2\ne0\), có thể chọn \(a=5;b=-12\), do đó ta được đường thẳng :
\(5x-12y+2=0\)
các bạn ơi giúp mình với ạ
Bài 2:
1: ĐKXĐ: 4x+1>=0 và 9-x<>0
=>x>=-1/4 và x<>9
2: ĐKXĐ: 4x+7>0 hoặc 7-x>0
=>x>-7/4 hoặc x<7
3: ĐKXĐ: 6x+7/3-x>=0
=>(6x+7)/(x-3)<=0
=>-7/6<=x<3
4: ĐKXĐ: (3-x)(3+x)>0
=>-3<x<3