K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=2\sqrt{6}\cdot3\sqrt{6}-4\sqrt{3}\cdot3\sqrt{6}+5\sqrt{2}\cdot3\sqrt{6}-\dfrac{1}{4}\cdot2\sqrt{2}\cdot3\sqrt{6}\)

\(=36-36\sqrt{2}+30\sqrt{3}-3\sqrt{3}\)

\(=36-36\sqrt{2}+27\sqrt{3}\)

b: \(=\left(-2\cdot\sqrt[3]{\dfrac{9}{5}}+4\cdot\sqrt[3]{\dfrac{1}{3}}\right):2\sqrt[3]{\dfrac{1}{3}}\)

\(=-\sqrt[3]{\dfrac{9}{5}:\dfrac{1}{3}}+2\cdot1\)

\(\simeq-1.75+2=0.25\)

29 tháng 7 2018

đề bài khó hỉu quá

1: \(=\left(a-3\right)\cdot\dfrac{\left|b\right|}{a-3}=\left|b\right|\)

2: \(\dfrac{1}{3+a}\cdot\sqrt{\dfrac{a^2+6a+9}{b^2}}\)

\(=\dfrac{1}{a+3}\cdot\dfrac{\left|a+3\right|}{b}=\pm\dfrac{1}{b}\)

3: \(=\left|a+1\right|-\dfrac{3a}{a-2}\cdot\dfrac{\left|a-2\right|}{3}\)

\(=\left|a+1\right|-a\)

4: \(=-6\sqrt{3}+6+28+6\sqrt{3}=34\)

21 tháng 9 2017

14dm5cm=14,5dm;3dm7cm=3,7dm

chu vi hình chữ nhật đó là:

(14,5+3,7)x2=36,4(dm)

ĐS:36,4dm

21 tháng 9 2017

14 dm 5 cm = 14,5 dm 

3 dm 7 cm = 3,7 dm 

Chiều rộng HCN là :

14,5 - 3,7 = 10,8 ( dm )

chu vi HCN là :

( 14,5 + 10,8 ) x 2 = 50,6 ( dm )

ĐS:..

26 tháng 7 2018

\(1.\text{ }\dfrac{1}{\sqrt{k}-\sqrt{k+1}}=\dfrac{\left(\sqrt{k}+\sqrt{k+1}\right)}{\left(\sqrt{k}+\sqrt{k+1}\right)\left(\sqrt{k}-\sqrt{k+1}\right)}\\ =-\left(\sqrt{k}+\sqrt{k+1}\right)\\ \Rightarrow\dfrac{1}{\sqrt{1}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{1}{\sqrt{3}-\sqrt{4}}-...-\dfrac{1}{\sqrt{8}-\sqrt{9}}\\ =-\left(\sqrt{1}+\sqrt{2}\right)+\left(\sqrt{2}+\sqrt{3}\right)-\left(\sqrt{3}+\sqrt{4}\right)+...+\left(\sqrt{8}+\sqrt{9}\right)\\ =-\sqrt{1}-\sqrt{2}+\sqrt{2}+\sqrt{3}-\sqrt{3}-\sqrt{4}+...+\sqrt{8}+\sqrt{9}\\ \\ =\sqrt{9}-\sqrt{1}=2\)

\(2.\text{ }\dfrac{1}{\left(k+1\right)\sqrt{k}+\sqrt{k+1}k}=\dfrac{1}{\sqrt{k\left(k+1\right)}\left(\sqrt{k+1}+\sqrt{k}\right)}\\ =\dfrac{\sqrt{k+1}-\sqrt{k}}{\sqrt{k\left(k+1\right)}\left(\sqrt{k+1}+\sqrt{k}\right)\left(\sqrt{k+1}-\sqrt{k}\right)}\\ =\dfrac{\sqrt{k+1}-\sqrt{k}}{\sqrt{k\left(k+1\right)}\left(k+1-k\right)}=\dfrac{\sqrt{k+1}-\sqrt{k}}{\sqrt{k\left(k+1\right)}}\\ =\dfrac{1}{\sqrt{k}}-\dfrac{1}{\sqrt{k+1}}\\ \Rightarrow\text{ }\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{7\sqrt{6}+6\sqrt{7}}\\ =\text{ }\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{6}}-\dfrac{1}{\sqrt{7}}\\ =\text{ }\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{7}}\\ \text{ }1-\dfrac{1}{\sqrt{7}}\)

26 tháng 7 2018

1.\(\dfrac{1}{\sqrt{1}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{1}{\sqrt{3}-\sqrt{4}}-\dfrac{1}{\sqrt{4}-\sqrt{5}}+\dfrac{1}{\sqrt{5}-\sqrt{6}}-\dfrac{1}{\sqrt{6}-\sqrt{7}}+\dfrac{1}{\sqrt{7}-\sqrt{8}}-\dfrac{1}{\sqrt{8}-\sqrt{9}}=\dfrac{1+\sqrt{2}}{1-2}-\dfrac{\sqrt{2}+\sqrt{3}}{2-3}+\dfrac{\sqrt{3}+\sqrt{4}}{3-4}-\dfrac{\sqrt{4}+\sqrt{5}}{4-5}+\dfrac{\sqrt{5}+\sqrt{6}}{5-6}-\dfrac{\sqrt{6}+\sqrt{7}}{6-7}+\dfrac{\sqrt{7}+\sqrt{8}}{7-8}-\dfrac{\sqrt{8}+\sqrt{9}}{8-9}=-1-\sqrt{2}+\sqrt{2}+\sqrt{3}-\sqrt{3}-\sqrt{4}+\sqrt{4}+\sqrt{5}-\sqrt{5}-\sqrt{6}+\sqrt{6}+\sqrt{7}-\sqrt{7}-\sqrt{8}+\sqrt{8}+\sqrt{9}=\sqrt{9}-1=3-1=2\)

26 tháng 6 2017

1 - 2 - 3 - 4 - 5 - 6 - 7 - - 8 - 9 - 9 - 111

= 1 - 2 - 3 - 4 - 5 - 6 - 7 + 8 - 9 - 9 - 111

= -26 + 8 - 9 - 9 - 111

= -18 - (-18) - 111

= -36 - 111

= -147

26 tháng 6 2017

= -154 nha bạn

27 tháng 8 2017

a) \(VT=2\sqrt{6}-4\sqrt{2}+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}\)

\(=2\sqrt{6}-4\sqrt{2}+1+4\sqrt{2}+8-2\sqrt{6}\)

\(=-4\sqrt{2}+1+4\sqrt{2}+8\)

\(=1+8\)

\(=9\)

\(\Rightarrow VT=VP\) (đpcm).

b) \(VT=\left(3\sqrt{10}-3\sqrt{2}+\sqrt{50}-\sqrt{10}\right)\sqrt{3-\sqrt{5}}\)

\(=\left(3\sqrt{10}-3\sqrt{2}+5\sqrt{2}-\sqrt{10}\right)\sqrt{3-\sqrt{5}}\)

\(=\left(2\sqrt{10}-2\sqrt{2}\right)\sqrt{3-\sqrt{5}}\)

\(=\sqrt{\left(2\sqrt{10}+2\sqrt{2}\right)^2\cdot\left(3-\sqrt{5}\right)}\)

\(=\sqrt{\left(40+8\sqrt{20}+8\right)\left(3-\sqrt{5}\right)}\)

\(=\sqrt{\left(48+16\sqrt{5}\right)\left(3-\sqrt{5}\right)}\)

\(=\sqrt{16\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}\)

\(=\sqrt{16\left(9-5\right)}\)

\(=\sqrt{64}\)

\(=8\)

\(\Rightarrow VT=VP\) (đpcm).

c) \(VT=\dfrac{2}{\sqrt{5}-2}-\dfrac{2}{2+\sqrt{5}}\)

\(=2\left(\sqrt{5}+2\right)-\dfrac{2\left(2-\sqrt{5}\right)}{-1}\)

\(=2\sqrt{5}+4+2\left(2-\sqrt{5}\right)\)

\(=2\sqrt{5}+4+4-2\sqrt{5}\)

\(=4+4\)

\(=8\)

\(\Rightarrow VT=VP\) (đpcm).