Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét tứ giác KMPC ta có : MPC = 90 (MP\(\perp\)BC)
MKC = 90 (MK\(\perp\)AC)
\(\Rightarrow\) MPC + MKC = 180
mà 2 góc này ở vị trí đối nhau \(\Rightarrow\) tứ giác KMPC nội tiếp
\(\Rightarrow\) MPK = MCK (2 góc nội tiếp cùng chắng cung MK của tứ giác KMPC)
MCK = MBC (góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cùng chắng cung CM của (o))
\(\Rightarrow\) MPK = MBC (đpcm)
xét tứ giác PBMI ta có :
BPM = 90 (MP\(\perp\)BC)
BIM = 90 (MI\(\perp\)BA)
\(\Rightarrow\) BPM + BIM = 180
mà 2 góc này ở vị trí đối nhau \(\Rightarrow\) tứ giác PBMI là tứ giác nội tiếp
\(\Rightarrow\) MIP = MBP (2 góc nội tiếp cùng chắng cung MP của tứ giác PBMI )
mà MBP = MPK (chứng minh trên)
\(\Rightarrow\) MIP = MPK
ta có : PMI + PBI = 180
PMK + PCK = 180
mà ABC = ACB
\(\Rightarrow\) PMK = PMI
xét \(\Delta\) MIP và \(\Delta\) MPK
ta có : PMK = PMI (chứng minh trên)
MIP = MPK (chứng minh trên)
\(\Rightarrow\) \(\Delta\) MIP đồng dạng \(\Delta\) MPK
\(\Leftrightarrow\) \(\dfrac{MI}{MP}\) = \(\dfrac{MP}{MK}\) \(\Leftrightarrow\) MP2 = MI . MK
\(\Rightarrow\) MI . MK . MP = MP3
\(\Rightarrow\) MI . MK . MP lớn nhất \(\Leftrightarrow\) MP lớn nhất
\(\Rightarrow\) M nằm chính giửa BC
a) OB=OC (=R) VÀ AB=AC(/c 2 tt cắt nhau)\(\Rightarrow\)OA LÀ ĐƯỜNG TRUNG TRỤC CỦA BC. b) \(BD\perp AB\)(t/c tt) và BE \(\perp AC\)(A \(\varepsilon\left(O\right)\)đường kính BC ). Aps dụng hệ thúc lượng ta có AE*AC=AB\(^2\)=AC\(^2\).
c) c/m OD\(^2=OB^2=OH\cdot OA\)và OH*OA=OK*OF ( \(\Delta OAK\omega\Delta OFH\left(g-g\right)\))\(\Rightarrow\frac{OD}{OF}=\frac{OK}{OD}\)mà góc FOD chung\(\Rightarrow\Delta OKD\omega\Delta ODF\left(c-g-c\right)\Rightarrow\widehat{ODF}=\widehat{OKD}=90\Rightarrow OD\perp DF\Rightarrowđpcm\)
a: Xét tứ giác AIMK có
góc AIM+góc AKM=180 độ
=>AIMK là tứ giác nội tiếp
b: Xet tứ giác CPMK có
góc CPM+góc CKM=180 độ
=>CPMK là tứ giac nội tiếp
=>góc MPK=góc MCK
góc MBC=góc MBP=góc MIP
mà góc MIP=góc MCK
nên góc MPK=góc MBC
Vẽ hình nữa