Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/A=1.21.22.23.24.25 câu 2 làm tương tự
A.2=2.22.23.24.25.26
A.2-A=(2.22.23.24.25.2 mũ 6)-(1.21.22.23.24.25)
A=26-1
3 A=1+3+32+33+...37
3.A=3+32+33+34...+38
2A=38-1
A=(38-1):2
\(A=1+2+2^2+.......+2^{2007}\Rightarrow2A=2+2^2+2^3+.........+2^{2008}\)
b) sai đề
c) dễ lắm
Ta có: 2x + 16 = 2(x + 7) + 2
Do x + 7 \(⋮\)x + 7 => 2(x + 7) \(⋮\)x + 7
Để 2x + 16 \(⋮\)x + 7 thì 2 \(⋮\)x + 7 => x + 7 \(\in\)Ư(2) = {1; 2; -1; -2}
Lập bảng :
x + 7 | 1 | 2 | -1 | -2 |
x | -6 | -5 | -8 | -9 |
Vậy ...
câu còn lại tương tự
a)Ta có: \(\frac{3}{1.4}=\frac{4-1}{1.4}=1-\frac{1}{4}\)
\(\frac{3}{4.7}=\frac{7-4}{4.7}=\frac{1}{4}-\frac{1}{7}\)
... . . . .
\(\frac{3}{n\left(n+3\right)}=\frac{1}{n}-\frac{1}{n+3}\)
\(\Leftrightarrow S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+3}< 1^{\left(đpcm\right)}\)
b) Ta có: \(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)
Suy ra \(\frac{2}{5}< S\) (1)
Ta lại có: \(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\)
Mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}=1-\frac{1}{9}=\frac{8}{9}\)
Từ đó suy ra S < 8/9
Từ (1) và (2) suy ra đpcm
a)=>A=\(1+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)
Đặt tổng trong ngoặc là M
=>M=\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)\(=1-\frac{1}{50}< 1\)
Khi đó A=1+M (M<1)
Ta có công thức :1+x<2 nếu x<1
=>A<1
\(a.\) \(A=1+2^1+2^2+2^3+...+2^{2007}\)
\(\Rightarrow2A=2.\left(1+2^1+2^2+2^3+...+2^{2007}\right)\)
\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2008}\)
\(b.\)Sai đề rồi, sửa lại:
Chứng minh: \(A=2^{2008}-1\)
C/m: \(2A=2+2^2+2^3+2^4+...+2^{2008}\)
\(\Rightarrow A=2+2^2+2^3+2^4+...+2^{2008}-\left(1+2^1+2^2+2^3+...+2^{2007}\right)\)
\(\Rightarrow A=2^{2008}-1\)\(\left(đpcm\right)\)
Theo mk lak vậy !
\(a,A=1+3+3^2+......+\)\(3^{2006}\)
\(\Rightarrow3A=3+3^2+3^3+......+3^{2007}\)
\(b,A=1+3+3^2+.....+3^{2006}\)
\(3A=3+3^2+3^3+......+3^{2007}\)
\(\Rightarrow3A-A=\left(3+3^2+3^3+.....+3^{2007}\right)-\left(1+3+3^2+.....+3^{2006}\right)\)
\(2A=3^{2007}-1\)
\(\Rightarrow A=\left(3^{2007}-1\right):2\)
a, 3A=3+3^2+3^3+...+3^2007
b, 3A-A=(3+3^2+3^3+..+3^2007)-(1+3+3^2+...+3^2006)
2A=3^2007-1
A=(3^2007-1):2 => đpcm
A=1−3+5−7+...+2001−2003+2005S=1−3+5−7+...+2001−2003+2005
=(1−3)+(5−7)+...+(2001−2003)+2005=(1−3)+(5−7)+...+(2001−2003)+2005(Có 1002 cặp)
=(−2).1002+2005=(−2).1002+2005
=−2004+2005=−2004+2005
=1
bài 1 mifk viết sai nha.
bài 1: cho A=1+3+3\(^2\)+3\(^3\)+...+3\(^{10}\).Tìm số tự nhiên n biết 2 x A + 1 = 3\(^n\)
B1:
\(A=1+3+3^2+3^3+...+3^{10}\\ 3A=3+3^2+3^3+3^4+...+3^{11}\\ 3A-A=3^{11}-1\\ \Rightarrow A=\frac{3^{11}-1}{2}\)
mấy câu khác tương tự nha
giúp mình với !!!!!!!!!!!!!!!!!!!!!!!!
Câu b, bài b1 chứng minh \(a=2^{2006}-1?\)