Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Vì:
\(\left\{{}\begin{matrix}\left|3x-\dfrac{1}{2}\right|\ge0\\\left|\dfrac{1}{2}y+\dfrac{3}{5}\right|\ge0\end{matrix}\right.\)
Nên dấu "=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\left|3x-\dfrac{1}{2}\right|=0\\\left|\dfrac{1}{2}y+\dfrac{3}{5}\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-\dfrac{1}{2}=0\\\dfrac{1}{2}y+\dfrac{3}{5}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x=\dfrac{1}{2}\\\dfrac{1}{2}y=-\dfrac{3}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=-\dfrac{6}{5}\end{matrix}\right.\)
Vậy ...
b) \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|+\left|\dfrac{1}{5}y-\dfrac{1}{2}\right|\le0\)
Vì:
\(\left\{{}\begin{matrix}\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|\ge0\\\left|\dfrac{1}{5}y-\dfrac{1}{2}\right|\ge0\end{matrix}\right.\)
Dấu "=" xảy ra, khi và chỉ khi:
\(\left\{{}\begin{matrix}\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|=0\\\left|\dfrac{1}{5}y-\dfrac{1}{2}\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{2}x+\dfrac{1}{9}=0\\\dfrac{1}{5}y-\dfrac{1}{2}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{2}x=-\dfrac{1}{9}\\\dfrac{1}{5}y=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{27}\\y=\dfrac{5}{2}\end{matrix}\right.\)
Vậy ...
Bài 1:
a: \(\Leftrightarrow\left|x+\dfrac{4}{15}\right|=-2.15+3.75=\dfrac{8}{5}\)
=>x+4/15=8/5 hoặc x+4/15=-8/5
=>x=4/3 hoặc x=-28/15
b: \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{5}{3}x=-\dfrac{1}{6}\\\dfrac{5}{3}x=\dfrac{1}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{6}:\dfrac{5}{3}=\dfrac{-3}{30}=\dfrac{-1}{10}\\x=\dfrac{1}{10}\end{matrix}\right.\)
c: \(\Leftrightarrow\left|x-1\right|-1=1\)
=>|x-1|=2
=>x-1=2 hoặc x-1=-2
=>x=3 hoặc x=-1
Bài 2:
b: \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y+\dfrac{9}{25}=0\end{matrix}\right.\Leftrightarrow x=y=-\dfrac{9}{25}\)
Bài 3:
a: \(A=\left|x+\dfrac{15}{19}\right|-1>=-1\)
Dấu '=' xảy ra khi x=-15/19
b: \(\left|x-\dfrac{4}{7}\right|+\dfrac{1}{2}>=\dfrac{1}{2}\)
Dấu '=' xảy ra khi x=4/7
B1: a, |2 - x| + 2 = x
=> |2 - x| = x - 2
Dễ thấy (2 - x) và số đối của (x - 2)
=> |2 - x| = x - 2
=> 2 - x ≤ 0
=> x ≥ 2
b, Điều kiện: x + 7 ≥ 0 => x ≥ -7
Ta có: |x - 9| = x + 7
\(\Rightarrow\orbr{\begin{cases}x-9=x+7\\x-9=-x-7\end{cases}\Rightarrow}\orbr{\begin{cases}0x=16\left(loai\right)\\2x=2\end{cases}\Rightarrow x=1}\left(t/m\right)\)
a, A = 3,5 + |x - 2017| - 9
= -5,5 + |x - 2017|
Ta có : |x - 2017| \(\ge0\Rightarrow-5,5+\left|x-2017\right|\ge-5,5\)
Dấu ''='' xảy ra <=> x - 2017 = 0 <=> x = 2017
Vậy GTNN của A = -5,5 <=> x = 2017
@Cô Bé Dễ Thương
Bài 3: A=2018-|x+2019|. Vì |x+2019|\(\ge\)0 nên -|x+2019|\(\le\)0=>2018-|x+2019|\(\le\) 2. Vậy A có GTLN = 2 khi x+2019=0 hay x=-2019. B=-10-\(\left|2x-\dfrac{1}{1009}\right|\). Vì \(\left|2x-\dfrac{1}{1009}\right|\ge0\Rightarrow-\left|2x-\dfrac{1}{1009}\right|\le0\Rightarrow-10-\left|2x-\dfrac{1}{1009}\right|\le-10\). Vậy B có GTLN = -10 khi 2x-\(\dfrac{1}{1009}=0\) => \(2x=\dfrac{1}{1009}\Rightarrow x=\dfrac{1}{1009}:2=\dfrac{1}{2018}\)
Bài 2: A=\(\left|5x+1\right|-\dfrac{3}{8}\). Vì \(\left|5x+1\right|\ge0\Rightarrow\left|5x+1\right|-\dfrac{3}{8}\ge\dfrac{-3}{8}\). Vậy A có GTNN = \(\dfrac{-3}{8}\) khi 5x+1= 0=> 5x= -1=> x = \(\dfrac{-1}{5}\). B=\(\left|2-\dfrac{1}{6}x\right|+0,25\) , vì \(\left|2-\dfrac{1}{6}x\right|\ge0\Rightarrow\left|2-\dfrac{1}{6}x\right|+0,25\ge0,25\) . Vậy B có GTNN = 0,25 khi \(2-\dfrac{1}{6}x=0\Rightarrow\dfrac{x}{6}=2\Rightarrow x=2.6=12\)
a) \(\left|3x-\frac{1}{2}\right|+\left|\frac{1}{2}y+\frac{3}{5}\right|=0\)
\(\Rightarrow\left|3x-\frac{1}{2}\right|=0\) \(\Rightarrow\left|\frac{1}{2}y+\frac{3}{5}\right|=0\)
\(\Rightarrow3x-\frac{1}{2}=0\) \(\Rightarrow\frac{1}{2}y+\frac{3}{5}=0\)
\(3x=\frac{1}{2}\) \(\frac{1}{2}y=\frac{-3}{5}\)
\(x=\frac{1}{2}:3\) \(y=\left(\frac{-3}{5}\right):\frac{1}{2}\)
\(x=\frac{1}{6}\) \(y=\frac{-6}{5}\)
KL: x = 1/6; y = -6/5
b) \(\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|\le0\)
mà \(\left|\frac{3}{2}x+\frac{1}{9}\right|>0;\left|\frac{1}{5}y-\frac{1}{2}\right|>0\)
\(\Rightarrow\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|>0\)
=> trường hợp |3/2x +1/9| + |1/5y -1/2| < 0 không thế xảy ra
\(\Rightarrow\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|=0\)
rùi bn lm tương tự như phần a nhé!
a) ta có
1 = 1+0
Ta có bảng sau:
x-1 | 1 | 0 |
y-2 | 0 |
1 |
x | 2 | 1 |
y | 2 |
3 |
Vậy x=2 , y=2
x=1 , y=3
b) Ta có : 0=0+0
ta có bảng sau:
x+3 | 0 |
y | 0 |
x | -3 |
Vậy y=0 , x=-3
Bài 1:
Nếu biểu thức A như bạn viết, thì sau khi rút gọn, $A=54x+270$ là biểu thức có giá trị phụ thuộc vào biến.
Sửa đề:
\(A=(x+3)^3-(x+9)(x^2+27)\)
\(=(x+3)(x+3)(x+3)-(x^3+27x+9x^2+243)\)
\(=(x^2+6x+9)(x+3)-(x^3+27x+9x^2+243)\)
\(=(x^3+3x^2+6x^2+18x+9x+27)-(x^3+27x+9x^2+243)\)
\(=(x^3+9x^2+27x+27)-(x^3+27x+9x^2+243)\)
\(=27-81=-216\) là biểu thức có giá trị không phụ thuộc vào biến $x $ (đpcm)
\(B=(x+y)(x^2-xy+y^2)+(x-y)(x^2+xy+y^2)-2(x^3-9)\)
\(=(x^3+y^3)+(x^3-y^3)-2(x^3-9)\) (hằng đẳng thức đáng nhớ)
\(=2x^3-2(x^3-9)=18\) là biểu thức có giá trị không phụ thuộc vào biến $x$ (đpcm)
Bài 2:
Sửa đề: Cho \((a^2+b^2)(x^2+y^2)=(ax+by)^2\)
CMR: \(\frac{a}{x}=\frac{b}{y}\)
Bạn lưu ý viết đề bài chính xác hơn.
-----------------------------
Ta có: \((a^2+b^2)(x^2+y^2)=(ax+by)^2\)
\(\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2ax.by+b^2y^2\)
\(\Leftrightarrow a^2y^2+b^2x^2=2ay.bx\)
\(\Leftrightarrow (ay)^2-2ay.bx+(bx)^2=0\)
\(\Leftrightarrow (ay-bx)^2=0\Leftrightarrow ay=bx\Leftrightarrow \frac{a}{x}=\frac{b}{y}\)
Ta có đpcm.