Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{1}{7}.\frac{1}{3}+\frac{1}{7}.\frac{1}{2}-\frac{1}{7}\)
\(=\frac{1}{7}.\left(\frac{1}{3}+\frac{1}{2}\right)-\frac{1}{7}\)
\(=\frac{1}{7}.\left(\frac{2}{6}+\frac{3}{6}\right)-\frac{1}{7}\)
\(=\frac{1}{7}.\frac{5}{6}-\frac{1}{7}\)
\(=\frac{5}{42}-\frac{1}{7}\)
\(=\frac{5}{42}-\frac{6}{42}=-\frac{1}{42}\)
a/\(\left(2-x\right)\times-3=\left(3x-1\right)\times4\)4
\(\Rightarrow-6+3x=12x-4\)
\(\Rightarrow-2=9x\)
\(\Rightarrow x=\frac{-2}{9}\)
bài b cx tương tự nha
ta có;\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=\frac{a+b}{c+d}\)(THEO TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU)
\(\Rightarrowđpcm\)
a/ \(\frac{-1}{-5}=\frac{1}{5}>\frac{1}{1000}\)
Vì khi tử số giống nhau, mẫu số càng lớn thì số đó càng bé và ngược lại. Trong trường hợp này 5<1000 \(\rightarrow\frac{1}{5}>\frac{1}{1000}\Rightarrow\frac{-1}{-5}>\frac{1}{1000}\)
b/ Ta so sánh 2 phân số này với -1
\(\frac{267}{-268}=\frac{-267}{268}< -1\)
\(-\frac{1347}{1343}>-1\)
\(\Rightarrow\frac{267}{-268}< -1< \frac{-1347}{1343}\)
\(\Rightarrow\frac{267}{-268}< \frac{-1347}{1343}\)
c/Ta có:
\(\frac{-18}{31}=\frac{\left(-18\right)\cdot10101}{31\cdot10101}=\frac{-181818}{313131}\)
\(\Rightarrow\frac{-18}{31}=\frac{-181818}{313131}\)
a ) \(\left|x+3\right|=\frac{4}{5}\)
\(x+3=\pm\frac{4}{5}\)
\(\Rightarrow\left[\begin{array}{nghiempt}x+3=\frac{4}{5}\\x+3=-\frac{4}{5}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{4}{5}-3\\x=-\frac{4}{5}-3\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}-\frac{11}{5}\\-\frac{19}{5}\end{array}\right.\)
Vậy x tồn tại hai giá trị \(x=-\frac{11}{5};-\frac{19}{5}\)
b) \(\left|x-\frac{5}{4}\right|=-\frac{1}{3}\)
\(\Rightarrow\left[\begin{array}{nghiempt}x-\frac{5}{4}=-\frac{1}{3}\\x-\frac{5}{4}=\frac{1}{3}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{11}{12}\\x=\frac{19}{12}\end{array}\right.\)
Vậy x tồn tại hai giá trị \(x=\frac{11}{12};\frac{19}{12}\)
\(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times...\times\left(1-\frac{1}{2015}\right)\times\left(1-\frac{1}{2016}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{2014}{2015}\times\frac{2015}{2016}\)
\(=\frac{1}{2016}\)
\(=\frac{1}{2}.\frac{2}{3}...\frac{2015}{2016}=\frac{1.2....2015}{2.3....2016}=\frac{1}{2016}\)
Ta có :
\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{99}+\frac{1}{100}-2.\frac{1}{2}-2.\frac{1}{4}-2.\frac{1}{6}-...-2.\frac{1}{100}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{99}+\frac{1}{100}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{50}\)
\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(B=\frac{2018}{51}+\frac{2018}{52}+\frac{2018}{53}+...+\frac{2018}{100}\)
\(=2018.\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\right)\)
\(\Rightarrow\frac{B}{A}=\frac{2018\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\right)}{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}\)
\(=2018\)
Vậy \(\frac{B}{A}\)là 1 số nguyên
!!!
Bạn xem lại đề, là cộng mới đúng chứ ???
Mình làm được rồi này :
\(B=\frac{1}{1.2.3}-\left(\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{97.98.99}\right)\)
\(=\frac{1}{6}-\left(\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{97.98}-\frac{1}{98.99}\right)\)
\(=\frac{1}{6}-\left(\frac{1}{2.3}-\frac{1}{98.99}\right)\)
\(=\frac{1}{6}-\frac{1}{6}+\frac{1}{9702}\)
\(=\frac{1}{9702}\)