Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/3 + 1/15 + 1/35 + 1/63 + 1/99 + 9999
= 1/3 + ( 1/5 + 1/35 + 1/63 ) + 1/99 = 9999
= 1/3 + 1111/9999 + 1/99
= 3333/9999 + 1111/9999 +101/9999
= 4545/9999
a.1+3+5+7+9+11+13+15+17+19
muốn tính tổng của dãy ta lấy tổng số đầu và cuối nhân số các số hạng rồi chia 2.
tổng của dãy:(19+1)x10:2=100
=1/3*5+1/5*7+1/7*9+...+1/99*101
=1/3-1/5+1/5-1/7+...+1/99-1/101
=1/3-1/101
=98/303
1)
\(\left(a\right)37+397+3997+39997\)
\(=40-3+400-3+4000-3+40000-3\)
\(=\left(40+400+4000+40000\right)-\left(3+3+3+3\right)\)
\(=44440-12=44428\)
\(\left(b\right)298+2998+29998+299998\)
\(=300-2+3000-2+30000-2+300000-2\)
\(=\left(300+3000+30000+300000\right)-\left(2+2+2+2\right)\)
\(=333300-8=333296\)
\(\left(c\right)9+99+999+9999+99999\)
\(=10-1+100-1+1000-1+10000-1+100000-1\)
\(=\left(10+100+1000+10000+100000\right)-\left(1+1+1+1+1\right)\)
\(=111110-5=111105\)
2)
\(\left(a\right)\left(2+4+6+...+2002+2004+2006\right)-\left(1+3+5+...+2001+2003+2005\right)\)
\(=\left(2-1\right)+\left(4-3\right)+\left(6-5\right)+...+\left(2002-2001\right)+\left(2004-2003\right)+\left(2006-2005\right)\)
\(=1+1+1+...+1+1+1\)( 1003 số 1 )
\(=1003\)
\(\left(b\right)88-87+86-85+84-83+...+6-5+4-3+2-1\)
\(=\left(88-87\right)+\left(86-85\right)+\left(84-83\right)+...+\left(6-5\right)+\left(4-3\right)+\left(2-1\right)\)
\(=1+1+1+...+1+1+1\)( 44 số 1 )
\(=44\)
\(\left(c\right)100-98+96-94+92-90+...+12-10+8-6+4-2\)
\(=\left(100-98\right)+\left(96-94\right)+\left(92-90\right)+...+\left(12-10\right)+\left(8-6\right)+\left(4-2\right)\)
\(=2+2+2+...+2+2+2\) ( 25 số 2 )
\(=50\)
3)
\(\left(a\right)360-357+354-351+348-345+...+312-309+306-303+300-297\)
\(=\left(360-357\right)+\left(354-351\right)+\left(348-345\right)+...+\left(312-309\right)+\left(306-303\right)+\)\(\left(300-297\right)\)
\(=3+3+3+3+3+3+3+3+3+3+3=33\)
\(\left(b\right)2006-1-2-3-4-...-47-48-49-50\)
\(=2006-\left(1+2+3+4+...+47+48+49+50\right)\)
\(=2006-\frac{\left(50+1\right)\left[\left(50-1\right)+1\right]}{2}\)
\(=2006-1275=731\)
\(\left(c\right)280-276+272-268+264-260+...+216-212+208-204+200-196\)
\(=\left(280-276\right)+\left(272-268\right)+\left(264-260\right)+...+\left(216-212\right)+\left(208-204\right)+\)\(\left(200-196\right)\)
\(=4+4+4+4+4+4+4+4+4+4+4=44\)
a, thì dễ rồi bạn tự làm nhé
mk làm câu b thôi
b,\(\frac{1}{1x2}\)+ \(\frac{1}{2x3}\)+......+\(\frac{1}{99x100}\)
= 1 - \(\frac{1}{2}\)+ \(\frac{1}{2}\)-\(\frac{1}{3}\)+....+\(\frac{1}{99}\)- \(\frac{1}{100}\)
= 1 - \(\frac{1}{100}\)
= \(\frac{99}{100}\)
Ta có:
A = 1 + 3 + 5 + 7 +... + 101
A = \(\frac{102.51}{2}=2601\)
M = 16 - 18 + 20 - 22 + 24 - 26 + .. + 64 - 66 + 68
M = ( 16 - 18 ) + ( 20 - 22 ) + ( 24 - 26 ) + ... + ( 64 - 66 ) + 68
M = (- 2 + - 2 + -2 + ... + - 2 ) + 68
M = 25/2 . ( - 2 ) + 68
M = -25 + 68
M = 43
H = ( 1 + 2 + 3 +...+ 99 ) x ( 13 x 15 - 12 x 15 - 15 )
H = ( 1 + 2 + 3 +...+ 99 ) x { (13 - 12 - 1) x 15 }
H = ( 1 + 2 + 3 +...+ 99 ) x 0
H = 0
G = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 + 10 - 11 - 12 + 13 + 14 - ... + 301 + 302
G = ( 1 + 2 ) + ( -3 - 4 ) + ( 5 + 6 ) + ( -7 - 8 ) + ( 9 + 10 ) + ( - 11 - 12 ) + ( 13 + 14 ) -...+ ( 301 + 302 )
G = ( 3 - 7 ) + ( 11 - 15 ) + ( 19 - 23 ) + 27 - ... + 603
G = -4 + - 4 + -4 + 27 - ... + 603
G = 75 x ( -4 ) + 603
G = -300 + 603
G = 303
2.
a) 1 + 2 + 3 + 4 +...+ 99 + 100 + 2 x X = 5052
= > \(\frac{100.101}{2}\)+ 2 x X = 5052
= > 5050 + 2 x X = 5052
= > 2X = 2
= > X = 1
C= \(\frac{49}{200}\)
D= \(\frac{33}{100}\)
Chúc bạn Hk tốt!!!!
C =1/2*4+1/4*6+1/6*8+...+1/98*100
2xC=2/2*4+2/4*6+2/6*8+...+2/98*100
2xC=1/2-1/4+1/4-1/6+1/6-1/8+...+1/98-1/100
2xC=1/2-1/100
2xC=49/100
C=49/100:2
C=49/200
Ý B làm tương tự nhưng nhưng cả 2 vế với 3
nha. ^_^ ^_^ ^_^
\(B=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{9999}{10000}\)
\(B=\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{9999}{100^2}\)
\(B=\frac{3.8.15...9999}{2^2.3^2.4^2...100^2}\)
\(B=\frac{1.3.2.4.3.5...99.101}{2.2.3.3.4.4...100.100}\)
\(B=\frac{\left(1.2.3...99\right).\left(3.4.5...101\right)}{\left(2.3.4...100\right).\left(2.3.4...100\right)}\)
\(B=\frac{1.101}{100.2}\)
\(B=\frac{101}{200}\)
\(C=\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{99}\right).\left(1+\frac{1}{100}\right)\)
\(C=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{100}{99}.\frac{101}{100}\)
\(C=\frac{3.4.5...100.101}{2.3.4...99.100}\)
\(C=\frac{101}{2}\)
Dấu . là dâú x nha