Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài toán cực trị có ẩn trong đoạn là pahir cẩn thận này @
\(0\le a,b,c\le1\)\(\Rightarrow a\left(1-a\right)\left(1-b\right)\ge0\Leftrightarrow a-ab-a^2+a^2b\ge0\)
\(\Leftrightarrow a^2b\ge ab+a^2-a\)
Tương tự \(b^2c\ge bc+b^2-b;c^2a\ge ca+c^2-c\)
\(\Rightarrow a^2b+b^2c+c^2a+1\ge1+bc+ca+ab-a-b-c+a^2+b^2+c^2\)
\(\ge\left(1-a\right)\left(1-b\right)\left(1-c\right)+abc+a^2+b^2+c^2\ge a^2+b^2+c^2\)
dấu = xảy ra \(\Leftrightarrow\left(a,b,c\right)\in\hept{ }\left(0,1,1\right),\left(0,0,1\right),\left(1,0,1\right)\left(1,1,0\right)\left(0,1,0\right),\left(1,0,0\right)\left\{\right\}\)
đề sai á? tg ns lăng nhăng lên đây thử xem có ai giải k thôi
Cho a, b, c > 0; a+b+c=3. Chứng minh
[(a+1):(b2+1)]+[(b+1):(c2+1)]+[(c+1):(a2+1)] lớn hơn hoặc bằng 3
\(VT=\Sigma_{cyc}\frac{a+1}{b^2+1}=\Sigma_{cyc}\left(\left(a+1\right)-\frac{b^2\left(a+1\right)}{b^2+1}\right)\)
\(=\left(a+b+c+3\right)-\Sigma_{cyc}\frac{b^2\left(a+1\right)}{b^2+1}\)
\(\ge6-\Sigma_{cyc}\frac{b\left(a+1\right)}{2}=6-\frac{ab+bc+ca+a+b+c}{2}\)
\(\ge6-\frac{\frac{\left(a+b+c\right)^2}{3}+a+b+c}{2}=3^{\left(đpcm\right)}\)
Đẳng thức xảy ra khi a = b =c = 1
Is that true?
a, \(16x^2-5=0\)
\(\Rightarrow16x^2=5\)
\(\Rightarrow x^2=\frac{5}{16}\)
\(\Rightarrow x=\sqrt{\frac{5}{16}}\Rightarrow x=\frac{\sqrt{5}}{4}\)
b, \(2\sqrt{x-3}=4\)
\(\Rightarrow\sqrt{x-3}=4:2\)
\(\Rightarrow\sqrt{x-3}=2\)
\(\Rightarrow x-3=4\)
\(\Rightarrow x=4+3\)
\(\Rightarrow x=7\)
c, \(\sqrt{4x^2-4x+1}=3\)
\(\Rightarrow\sqrt{\left(2x-1\right)^2}=3\)
\(\Rightarrow2x-1=3\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=2\)
d, \(\sqrt{x+3}\ge5\)
\(\Rightarrow x+3\ge25\)
\(\Rightarrow x\ge22\)
e, \(\sqrt{3x-1}< 2\)
\(\Rightarrow3x-1< 4\)
\(\Rightarrow3x< 5\)
\(\Rightarrow x< \frac{5}{3}\)
g, \(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
\(\Rightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)
\(\Rightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)
\(\left(\sqrt{x+3}+\sqrt{x-3}\right)>0\)
\(\Rightarrow\sqrt{x-3}=0\)
\(\Rightarrow x-3=0\)
\(\Rightarrow x=3\)
a) \(16x^2-5=0\)
\(\Leftrightarrow16x^2=5\)
\(\Leftrightarrow x^2=\frac{5}{16}\)
\(\Leftrightarrow x=\pm\sqrt{\frac{5}{16}}\)
b) \(2\sqrt{x-3}=4\)
\(\Leftrightarrow\sqrt{x-3}=2\)
\(\Leftrightarrow x-3=4\)
\(\Leftrightarrow x=7\)
c) \(\sqrt{4x^2-4x+1}=3\)
\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=3\)
\(\Leftrightarrow2x-1=3\)
\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\)
d) \(\sqrt{x+3}\ge5\)
\(\Leftrightarrow x+3\ge25\)
\(\Leftrightarrow x\ge22\)
e) \(\sqrt{3x-1}< 2\)
\(\Leftrightarrow3x-1< 4\)
\(\Leftrightarrow3x< 5\)
\(\Leftrightarrow x< \frac{5}{3}\)
g) \(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
\(\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)
Vì \(\left(\sqrt{x+3}+\sqrt{x-3}\right)>0\)
\(\Leftrightarrow\sqrt{x-3}=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
\(\text{bđt }\Leftrightarrow4\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge3\left(a+b+c\right)^2\)
\(\Leftrightarrow\left(4a^2b^2+4a^2+4b^2+4\right)\left(c^2+1\right)\ge3\left(a+b+c\right)^2\text{ (1)}\)
Theo nguyên lý Dirichlet, trong 3 số \(a^2;b^2;c^2\), luôn tồn tại 2 số cùng \(\ge\frac{1}{2}\)hoặc cùng \(\le\frac{1}{2}\), giả sử là a và b
\(\Rightarrow\left(2a^2-1\right)\left(2b^2-1\right)\ge0\)
\(\Leftrightarrow4a^2b^2\ge2\left(a^2+b^2\right)-1\)
\(\Rightarrow VT\text{ (1) }\ge\left[6\left(a^2+b^2\right)+3\right]\left(c^2+1\right)=3\left[2\left(a^2+b^2\right)+1\right]\left(c^2+1\right)\)
\(\ge3\left[\left(a+b\right)^2+1^2\right]\left[1^2+c^2\right]\ge3\left[\left(a+b\right).1+1.c\right]^2=3\left(a+b+c\right)^2\)
(Theo bđt Bunhiacopxki)
Vậy ta có đpcm.
cho tam giác ABC vuong tại A có AB<AC và đường cao AH. gọi M,N,P lần lượt là trung điểm của các cạnh BC, CA, AB , biết AH=4,AM=5.cmr các điểm A,H,M,N,P thuộc cùng một đường tròn