Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b1:
\(-5.\left(x-\frac{1}{5}\right)-\frac{1}{2}\left(x-\frac{2}{3}\right)=\frac{3}{2}x-\frac{5}{6}\Leftrightarrow-5x+1-\frac{1}{2}x+\frac{1}{3}=\frac{3}{2}x-\frac{5}{6}\)
\(\Leftrightarrow-\frac{11}{2}x+\frac{4}{3}=\frac{3}{2}x-\frac{5}{6}\Leftrightarrow-\frac{11}{2}x-\frac{3}{2}x=-\frac{5}{6}-\frac{4}{3}\Leftrightarrow-7x=-\frac{13}{6}\)
\(\Leftrightarrow x=\frac{-13}{6}:\left(-7\right)=\frac{13}{42}\)
b2:
a)\(3^{3x-1}=9^{x-2}\Leftrightarrow3^{3x-1}=\left(3^2\right)^{x-2}\Leftrightarrow3^{3x-1}=3^{2x-4}\Leftrightarrow3x-1=2x-4\)
<=>3x-2x=-4+1<=>x=-3
b)\(\left(x-1\right)^4=\left(x-1\right)^6\Leftrightarrow\left(x-1\right)^4-\left(x-1\right)^6=0\Leftrightarrow\left(x-1\right)^4\left[1-\left(x-1\right)^2\right]=0\)
\(\Leftrightarrow\left(x-1\right)^4\left[1-\left(x^2-2x+1\right)\right]=0\Leftrightarrow\left(x-1\right)^4\left(1-x^2+2x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^4\left(-x^2+2x\right)=0\Leftrightarrow\left(x-1\right)^4.\left(-x\right).\left(x-2\right)=0\)
<=>(x-1)4=0 hoặc -x=0 hoặc x-2=0 <=> x=1 hoặc x=0 hoặc x=2
CÁC BN GIÚP MK VS NHA !!!!! MK DAG CẦN CỰC KỲ GẤP ĐÓ Ạ , AI GIẢI DC HẾT CHỖ NÀY SẼ DC K 3 CÁI ĐÓ Ạ !!!! CÁM ƠN MỌI NGƯỜI TRƯỚC Ạ ^^
\(a)\) Ta có :
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(A=1-\frac{1}{2^{100}}< 1\)
Vậy \(A< 1\)
Chúc bạn học tốt ~
câu 1 :
\(A=\frac{-7}{12}:\frac{49}{11}\cdot\frac{5}{121}-\frac{7}{6}\) \(B=\frac{1}{8}-\frac{8}{7}:8-3:\frac{3}{4}\cdot-2^3\)
\(A=\frac{-11}{84}\cdot\frac{5}{121}-\frac{7}{6}\) \(B=\frac{1}{8}-\frac{8}{7}:\frac{8}{1}-\frac{3}{1}:\frac{3}{4}\cdot\left(-2^3\right)\)
\(A=\frac{-5}{924}-\frac{7}{6}\) \(B=\frac{1}{8}-\frac{1}{7}-\left(-32\right)\)
\(A=\frac{-361}{308}\) \(B=\frac{-1}{56}-\left(-32\right)\)
\(B=\frac{1791}{56}\)
Câu 2 :
a)\(\frac{22}{7}:x=\frac{11}{7}\) b)\(\left(1-3x\right)\cdot\frac{4}{3}=-2^3\)
\(x=\frac{22}{7}:\frac{11}{7}\) \(\left(1-3x\right)\cdot\frac{4}{3}=-8\)
\(x=2\) \(\left(1-3x\right)=-8:\frac{4}{3}\)
\(\left(1-3x\right)=-6\)
\(3x=-6-1=7\)
\(3x=7:3=\frac{7}{3}\)
c ) bằng \(\frac{27}{5}\)nhé
a: \(\dfrac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5+3^5}\cdot\dfrac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5+2^5+2^5+2^5+2^5}=2^x\)
\(\Leftrightarrow2^x=\dfrac{4^5}{3^5}\cdot\dfrac{6^5}{2^5}=4^5=2^{10}\)
=>x=10
b: \(\left(x-1\right)^{x+4}=\left(x-1\right)^{x+2}\)
\(\Leftrightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^2-1\right]=0\)
\(\Leftrightarrow x\left(x-1\right)^{x+2}\cdot\left(x-2\right)=0\)
hay \(x\in\left\{0;1;2\right\}\)
c: \(6\left(6-x\right)^{2003}=\left(6-x\right)^{2003}\)
\(\Leftrightarrow5\cdot\left(6-x\right)^{2003}=0\)
\(\Leftrightarrow6-x=0\)
hay x=6
Bài 1 :
a/ \(a^3.a^9=a^{3+9}=a^{12}\)
b/\(\left(a^5\right)^7=a^{5.7}=a^{35}\)
c/ \(\left(a^6\right).4.a^{12}=a^{24}.a^{12}.4=a^{24+12}.4=a^{36}.4\)
d/ \(\left(2^3\right)^5.\left(2^3\right)^3=2^{15}.2^9=2^{15+9}=2^{24}\)
e/ \(5^6:5^3+3^3.3^2\)
\(=5^3+3^5=125+243=368\)
i/ \(4.5^2-2.3^2\)
\(=2^2.5^2-2.3^2\)
\(=2^2.25-2^2.14\)
\(=2^2.\left(25-14\right)\)
\(=2^2.11\)
\(=4.11=44\)
\(\frac{x-1}{6}=\frac{6}{x-1}\)
\(\Rightarrow\left(x-1\right)^2=36\)
\(\Rightarrow\orbr{\begin{cases}x-1=6\\x-1=-6\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=7\\x=-5\end{cases}}\)
a) \(\frac{x-1}{6}=\frac{6}{x-1}\)
<=> (x - 1)(x - 1) = 6.6
<=> (x - 1)2 = 36
<=> (x - 1)2 = 62
\(\Leftrightarrow\orbr{\begin{cases}x-1=6\\x-1=-6\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=7\\x=-5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=7\\x=-5\end{cases}}\)
b) \(\frac{\left|x+3\right|}{5}=\frac{1}{4}\)
\(\Leftrightarrow\frac{5.\left|x+3\right|}{5}=\frac{5.1}{4}\)
\(\Leftrightarrow\left|x+3\right|=\frac{5}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=\frac{5}{4}\\x+3=-\frac{5}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{7}{4}\\x=-\frac{17}{4}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{7}{4}\\x=-\frac{17}{4}\end{cases}}\)