K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2020

Sao chép

26 tháng 10 2016

a) \(A=\left|x-2016\right|+2017\)

Vì: \(\left|x-2016\right|\ge0\)

=> \(\left|x-2016\right|+2017\ge2017\)

Vậy GTNN của A lòa 2017 khi\(x-2016=0\Leftrightarrow x=2016\)

b) \(\left|x-2016\right|+\left|y-2017\right|+2018\)

Vì: \(\begin{cases}\left|x-2016\right|\ge0\\\left|x-2017\right|\ge0\end{cases}\)\(\Leftrightarrow\left|x-2016\right|+\left|x-2017\right|\ge0\)

=> \(\left|x-2016\right|+\left|y-2017\right|+2018\ge2018\)

Vậy GTNN của B là 2018 khi \(\begin{cases}x-2016=0\\y-2017=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=2016\\y=2017\end{cases}\)

28 tháng 10 2016

a)Ta có: |x-2016|\(\ge\) 0

=>|x-2016|+2017 \(\ge\) 2017

hay A \(\ge\) 2017

GTNN của A = 2017 khi |x-2016|=0

=>x-2016=0

=>x=0+2016

=>x=2016

Vậy GTNN của A=2017 khi x=2016

b)Tương tự câu a)

26 tháng 10 2016

a) Ta có: |x-2016| luôn lớn hơn hoặc bằng 0

=>|x-2016| + 2017 luôn lớn hơn hoặc bằng 2017

Dấu bằng xảy ra khi |x-2016|=0

=> x-2016=0

=>x=2016

vậy GTNN của A bằng 2017 khi x=2016

b)Ta có |x-2016| + |y-2017| luôn lớn hơn hoặc bằng 0

=>|x-2016|+|y-2-17| + 2018 luôn lớn hơn hoặc bằng 2018

Dấu bằng xảy ra khi

\(\left[\begin{array}{nghiempt}x-1016=0\\y-1017=0\end{cases}=\left[\begin{array}{nghiempt}x=2016\\y=2017\end{array}\right.}\)

26 tháng 10 2016

a)Vì |x2015|= 1/2 nên x-2015=-1/2 hoặc x-2015=1/2

Nếu x-2015=-1/2 thì

x=2015+(-1)/2

x=4029/2

Nếu x-2015=1/2 thì

x=2015+1/2

x=4031/2

Vậy x=4029/2

hoặc x=4031/2

 

26 tháng 10 2016

b)

Nếu x>2016 thì |x2015|=x-2015 ,|x2016|=x-2016

Khi đó: |x2015|+|x2016|=2017

=>x-2015+x-2016=2017

=>2x-4031=2017

=>2x=6048=>x=3024(thỏa mãn x>2016)

Nếu 2015<x<2016 thì |x2015|=x-2015,

|x2016|=2016-x. khi đó

|x2015|+|x2016|=2017

=>x-2015+2016-x=2017

=>1=2017(vô lý loại)

Nếu x>2015 thì |x2015|=2015-x,|x2016|=2016-x

Khi đó:

|x2015|+|x2016|=2017

=>2015-x+2016-x=2017

=>4031-2x=2017

=>2x=2014=>x=1007(thỏa mãn x<2015)

Vậy x=1007 hoặc x=3024

6 tháng 11 2018

\(A=\left|x-2016\right|+\left|x-2017\right|+\left|x-2015\right|\)

\(A= \left|x-2016\right|+\left|2017-x\right|+\left|x-2015\right|\)

\(A\ge\left|x-2016\right|+\left|2017-x+x-2015\right|\)

\(A\ge\left|x-2016\right|+2\ge2\)

\("="\Leftrightarrow\hept{\begin{cases}x=2016\\2015\le x\le2017\end{cases}}\Leftrightarrow x=2016\)