Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ĐKXĐ: \(x>0;x\ne1;x\ne4\)
\(M=\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
\(=\frac{\sqrt{x}-\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{x-1-x+2}\)
\(=\frac{\sqrt{x}-2}{\sqrt{x}}\)
ĐKXĐ: Bạn tự làm nha
\(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)
\(=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)
\(=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)
\(=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-2\sqrt{x}-1+2\sqrt{x}+2\)
\(=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}+1\)
\(=\frac{x^2-\sqrt{x}+x+\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(=\frac{x^2+x+1}{x+\sqrt{x}+1}\)
\(B=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}+1}-\frac{2}{a-1}\right)\)
\(=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{1}{\sqrt{a}+1}-\frac{2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)
\(=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{1\left(\sqrt{a}-1\right)-2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{\left(\sqrt{a}+1\right)}{\sqrt{a}}.\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}-1-2}\)
\(=\frac{\left(\sqrt{a}+1\right)\left(a-1\right)}{\sqrt{a}\left(\sqrt{a}-3\right)}\)
\(a,M=\left(\frac{\sqrt{x}+1}{\sqrt{2x}+1}+\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}-1\right):\left(1+\frac{\sqrt{x}+1}{\sqrt{2x}+1}-\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)
\(=\left(\frac{2x-2\sqrt{2}x+2\sqrt{2x}-1}{2x-1}-1\right):\left(1+\frac{\sqrt{x}+1}{\sqrt{2x+1}}-\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)
\(=\left(\frac{-2\sqrt{2}x+2\sqrt{2x}}{2x-1}\right):\left(1+\frac{x\sqrt{2}-\sqrt{x}+\sqrt{2x}-1-\left(2x+\sqrt{2x}+x\sqrt{2}+\sqrt{x}\right)}{2x-1}\right)\)
\(=\left(\frac{-2\sqrt{2}x+2\sqrt{2x}}{2x-1}\right):\left(\frac{-2\sqrt{x}-2}{2x-1}\right)\)
\(=\frac{-\sqrt{2}x+\sqrt{2x}}{\sqrt{x}-1}\)
\(=\frac{-\sqrt{2x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
\(=-\sqrt{2x}\)
\(b,x=\frac{1}{2}\left(3+2\sqrt{2}\right)\)
\(x=\frac{1}{2}\left(1+2\sqrt{2}+2\right)\)
\(x=\frac{1}{2}\left(1+\sqrt{2}\right)^2\)
Thay \(x=\frac{1}{2}\left(1+\sqrt{2}\right)^2\) vào \(M=-\sqrt{2x}\) ta được:
\(M=-\sqrt{2.\frac{1}{2}\left(1+\sqrt{2}\right)^2}\)
\(M=-1-\sqrt{2}\)
Vậy ..............
ĐKXĐ: ...
\(P=\left(\frac{2x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\left(\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}+1}-\sqrt{x}\right)\)
\(=\left(\frac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\left(x-2\sqrt{x}+1\right)\)
\(=\left(\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\left(\sqrt{x}-1\right)^2\)
\(=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\sqrt{x}-1\)