\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2017}}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2019

a) Ta có: \(A=\frac{2^{2017}}{2^{2017}}+\frac{2^{2016}}{2^{2017}}+\frac{2^{2015}}{2^{2017}}+...+\frac{2^1}{2^{2017}}+\frac{1}{2^{2017}}\)

\(=\frac{1+2^1+2^2+...+2^{2016}+2^{2017}}{2^{2017}}\)

Đặt: B=\(1+2^1+2^2+...+2^{2017}\)

\(\Leftrightarrow2B=2^1+2^2+2^3+....+2^{2017}+2^{2018}\)

\(\Leftrightarrow2B-B=2^{2018}-1\)

\(\Leftrightarrow B=2^{2018}-1\)

\(\Rightarrow A=\frac{B}{2^{2017}}=\frac{2^{2018}-1}{2^{2017}}\)

Mik chỉ biết làm phần a thôi

NV
3 tháng 5 2019

b/ Sử dụng quy tắc: \(\frac{a+c}{b+c}< \frac{a}{b}\) với \(\left\{{}\begin{matrix}a;b;c>0\\a>b\end{matrix}\right.\)

\(B=\frac{2^{10}-1}{2^{10}-3}>\frac{2^{10}-1+2}{2^{10}-3+2}=\frac{2^{10}+1}{2^{10}-1}\)

\(\Rightarrow B>A\)

25 tháng 3 2019

Bài 1:

\(A=\frac{3333}{101}\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)=\frac{3333}{101}\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)

\(A=\frac{3333}{101}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)

\(A=\frac{3333}{101}\left(\frac{1}{3}-\frac{1}{7}\right)=\frac{3333}{101}.\frac{4}{21}=\frac{1111.4}{101.7}=\frac{4444}{707}\)

Bài 2

\(A=\frac{2^{10}+1}{2^{10}-1}=\frac{2^{10}-1+2}{2^{10}-1}=1+\frac{2}{2^{10}-1}\)

\(B=\frac{2^{10}-1}{2^{10}-3}=\frac{2^{10}-3+4}{2^{10}-3}=1+\frac{4}{2^{10}-3}\)

Ta thấy \(2^{10}-1>2^{10}-3\Rightarrow\frac{2}{2^{10}-1}< \frac{2}{2^{10}-3}< \frac{4}{2^{10}-3}\)

Từ đó \(\Rightarrow1+\frac{2}{2^{10}-1}< 1+\frac{4}{2^{10}-3}\Rightarrow A< B\)

Bài 3\(P=\frac{\left(\frac{2}{3}-\frac{1}{4}\right)+\frac{5}{11}}{\frac{5}{12}+\left(1-\frac{7}{11}\right)}=\frac{\frac{5}{12}+\frac{5}{11}}{\frac{5}{12}+\frac{4}{11}}=\frac{\frac{55+60}{11.12}}{\frac{55+48}{12.11}}=\frac{115}{103}\)

12 tháng 6 2020

Bài 2 sai r bạn ơi

24 tháng 7 2020

a) Ta có : 10A = \(\frac{10\left(10^{2004}+1\right)}{10^{2005}+1}=\frac{10^{2005}+10}{10^{2005}+1}=1+\frac{9}{10^{2005}+1}\)

Lại có 10B = \(\frac{10\left(10^{2005}+1\right)}{10^{2006}+1}=\frac{10^{2006}+10}{10^{2006}+1}=1+\frac{9}{10^{2006}+1}\)

Vì \(\frac{9}{10^{2005}+1}>\frac{9}{10^{2006}+1}\Rightarrow1+\frac{9}{10^{2005}+1}>1+\frac{9}{10^{2006}+1}\)

=> 10A > 10B 

=> A > B

b) Ta có A = \(\frac{20^{10}+1}{20^{10}-1}=\frac{20^{10}-1+2}{20^{10}-1}=1+\frac{2}{20^{10}-1}\)

Lại có B = \(\frac{20^{10}-1}{20^{10}-3}=\frac{20^{10}-3+2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)

Vì \(\frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}\Rightarrow1+\frac{2}{20^{10}-1}< 1-\frac{2}{20^{10}-3}\) 

=> A < B

24 tháng 7 2020

Cảm ơn bạn rất nhiều nha

8 tháng 3 2022

TL :

Ko biết thì đừng làm

Nhớ làm hết , chi tiết mới đc 1 SP

HT

8 tháng 3 2022

rep dẹp hết

10 tháng 5 2018

ta thấy B>1 nên B=\(\frac{20^{10}-1}{20^{10}-3}\)>\(\frac{20^{10}-1+2}{20^{100}-3+2}\)=\(\frac{20^{10}+1}{20^{10}-1}\)=A

vậy B>A

nếu ko hiểu thì tham khảo trong SBT lớp 6 bài so sánh PS ấy

27 tháng 4 2017

Vì \(20^{10}-1>20^{10}-3\)

\(\Rightarrow B=\frac{20^{10}-1}{20^{10}-3}>\frac{20^{10}-1+2}{20^{10}-3+2}=\frac{20^{10}+1}{20^{10}-1}=A\)

vậy \(A< B\)

10 tháng 7 2017

B2 :P Ta có : \(B=\frac{2^{10}+1}{2^{10}-1}=1+\frac{2}{2^{10}-1}\)

      \(C=\frac{2^{10}-1}{2^{10}-3}=1+\frac{2}{2^{10}-3}\)

Nên : B > C

10 tháng 7 2017

Nhầm C > B 

2 tháng 5 2016

Ta có a/b >1 => a/b > a+n/b+n(a, b,n $\in$∈ N*)               

B = 2010-1/2010-3 > 1 nên B = 2010-1/2010-3 > 2010-1+2/2010-3+2  

   = 2010+1/ 2010-1 = A

Vay \(A=\frac{2^{10}+1}{20^{10}-1}<\frac{20^{10}-1}{20^{10}-3}\)