K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2015

(A) Mở bài :

- Mỗi mùa có một nét đẹp riêng và người ta thư­ờng hay xao xuyến nhất ấy là vào lúc giao mùa.

- Thời khắc ấy thư­ờng diễn ra những biến đổi tinh vi không chỉ ở thế giới của thiên nhiên mà còn ở cả thế giới của con ngư­ời.

- Với tôi khoảnh khắc giao mùa từ hè sang thu(từ đông sang xuân, xuân sang hạ…) để lại nhiều ấn tư­ợng và gợi niềm say mê hơn cả.

(B) Thân bài :

- Cảm nghĩ về thiên nhiên:

+ Nêu các dấu hiệu giao mùa(ví dụ mùa hè sang mùa thu: khí trời mát mẻ, ban đêm trời se lạnh không đủ rét để mặc một chiếc áo mùa đông nhưng lạnh­ đủ để ngư­ời ta cảm thấy rùng mình, hoa cúc trong các vư­ờn đua nhau nở, sen trong các ao úa tàn…)

+ Cảm giác của bản thân trư­ớc các dấu hiệu chuyển mùa của thiên nhiên (vui, buồn , nhớ nhung về một kỉ niệm tuổi thơ nào đó chẳng hạn…)

- Cảm nghĩ về đời sống con ngư­ời:

+ Nhịp điệu cuộc sống thay đổi ra sao?(ồn ã, sôi động hay tẻ nhạt)

+ Con ngư­ời: Vui tư­ơi, phấn khởi, hào hứng đợi chờ (sang xuân) hay thu mình lại, buồn hơn, suy tư­ hơn(thu sang đông)…

(C) Kết bài :

 Tóm lại, khoảnh khắc giao mùa là những đợt “trở mình” rất duyên của trời đất.

Cảm nhận những biến chuyển  lúc giao mùa ấy giúp ta mài sắc nhữ­ng giác quan, giúp tâm hồn ta sinh động và tinh tế hơn lên.

 

7 tháng 6 2019

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}....\frac{1}{99.100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}\)

7 tháng 6 2019

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}=\frac{99}{100}\)

P/s: Đề nghị ko đăng giúp tăng sp, đổi nhé. -_- 

14 tháng 7 2017

bình thường

14 tháng 7 2017

Ta có : B = 1.2 + 2.3 + 3.4 + ...... + 99.100

<=> 3B = 1.2.3 + 0.1.2 - 1.2.3 + 2.3.4 - 2.3.4 + ....... + 99.100.101

<=> 3B = 99.100.101

<=> B = \(\frac{99.100.101}{3}=333300\)

2 tháng 9 2016

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

2 tháng 9 2016

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

28 tháng 7 2018

tích mình đi

ai tích mình

mình ko tích lại đâu

thanks

23 tháng 8 2019

a) \(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}< 1\)

\(\Rightarrow A< 1\)

23 tháng 8 2019

b) \(B=\frac{1}{3}+\left(\frac{1}{3}\right)^2+...+\left(\frac{1}{3}\right)^{100}\)

\(\Rightarrow3B=1+\frac{1}{3}+...+\left(\frac{1}{3}\right)^{99}\)

\(\Rightarrow3B-B=1-\left(\frac{1}{3}\right)^{100}\)

\(\Rightarrow2B=1-\left(\frac{1}{3}\right)^{100}< 1\)

\(\Rightarrow2B< 1\)

\(\Rightarrow B< \frac{1}{2}\)

23 tháng 10 2016

Chứng minh rằng:

\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}< 2\)

Ta có:

\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\\ =\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)

\(=\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)

\(=\left(1+1+\frac{1}{2!}+...+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)

\(=2-\frac{1}{99!}-\frac{1}{100}< 2\)

23 tháng 10 2016

Ichigo bạn hiểu thì kệ bạn :v

1 tháng 9 2015

a)\(A=\frac{n.\left(n+1\right)}{2}\)

b)B=1.2+2.3+3.4+...+99.100

=>B.3=1.2.3+2.3.3+3.4.3+...+99.100.3

=>B.3=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)

=>B.3=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100

=>B.3=99.100.101

=>\(=>B=\frac{99.100.101}{3}=\frac{999900}{2}=499950\)

13 tháng 9 2016

gọi biểu thức trên là A. Ta có :

A = 1.2 + 2.3 + 3.4 + ... + 99.100

3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3

3A = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) + ... + 99.100.(101-98)

3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5-2.3.4 + ... + 99.100.101 - 98.99.100

3A = 99.100.101

A = 99.100.101 : 3

A = 333300

13 tháng 9 2016

mk giỏi công nghệ 7 nè !

29 tháng 6 2016

Giúp Mình với