K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2024

a. Ta có: ˆBEH=90𝐵𝐸𝐻^=90∘(góc nội tiếp chắn nửa (BH))  HE  AB

∆AHB vông tại H, đường cao HE:

AE.AB = AH2(1)𝐴𝐻2(1)

ˆHFC=90𝐻𝐹𝐶^=90∘(góc nội tiếp chắn nửa (HC))  HF  AC

∆AHC vuông tại H, đường cao HF: AF.AC = AH2𝐴𝐻2(2)

Từ (1) và (2)  AE.AB = AF.AC

b. Ta có: ˆBAC=90𝐵𝐴𝐶^=90∘(góc nội tiếp chắn nửa (BC)) ˆEAF=90⇒𝐸𝐴𝐹^=90∘

Mà ˆAEH=90(HEAB)𝐴𝐸𝐻^=90∘(𝐻𝐸⊥𝐴𝐵) và ˆAFH=90(HFAC)𝐴𝐹𝐻^=90∘(𝐻𝐹⊥𝐴𝐶)

 Tứ giác AEHF là hình chữ nhật  Tứ giác AEHF nội tiếp

ˆHEF=ˆHAF𝐻𝐸𝐹^=𝐻𝐴𝐹^(Cùng chắn cung HF của (AEHF))

ˆHAF=ˆABC𝐻𝐴𝐹^=𝐴𝐵𝐶^⇒ EF là tiếp tuyến (BH)

c. Ta sẽ chứng minh ˆAIH=ˆKAC𝐴𝐼𝐻^=𝐾𝐴𝐶^

Ta có: ˆKAC=ˆHAC𝐾𝐴𝐶^=𝐻𝐴𝐶^ (tính chất đối xứng)

ˆHAC=ˆAHE𝐻𝐴𝐶^=𝐴𝐻𝐸^ (so le trong) ˆKAC=ˆAHE⇒𝐾𝐴𝐶^=𝐴𝐻𝐸^

ˆAIH=ˆAHE𝐴𝐼𝐻^=𝐴𝐻𝐸^ (tính chất đối xứng)

Vậy ˆAIH=ˆKAC𝐴𝐼𝐻^=𝐾𝐴𝐶^ (Cùng = ˆAHE𝐴𝐻𝐸^)

Mà AC // IH (tứ giác AEHF là hình chữ nhật)

ˆAIH⇒𝐴𝐼𝐻^ và ˆKAC𝐾𝐴𝐶^ đồng vị  I, A, K thẳng hàng

29 tháng 5 2024

a. Ta có: ˆBEH=90𝐵𝐸𝐻^=90∘(góc nội tiếp chắn nửa (BH))  HE  AB

∆AHB vông tại H, đường cao HE:

AE.AB = AH2(1)𝐴𝐻2(1)

ˆHFC=90𝐻𝐹𝐶^=90∘(góc nội tiếp chắn nửa (HC))  HF  AC

∆AHC vuông tại H, đường cao HF: AF.AC = AH2𝐴𝐻2(2)

Từ (1) và (2)  AE.AB = AF.AC

b. Ta có: ˆBAC=90𝐵𝐴𝐶^=90∘(góc nội tiếp chắn nửa (BC)) ˆEAF=90⇒𝐸𝐴𝐹^=90∘

Mà ˆAEH=90(HEAB)𝐴𝐸𝐻^=90∘(𝐻𝐸⊥𝐴𝐵) và ˆAFH=90(HFAC)𝐴𝐹𝐻^=90∘(𝐻𝐹⊥𝐴𝐶)

 Tứ giác AEHF là hình chữ nhật  Tứ giác AEHF nội tiếp

ˆHEF=ˆHAF𝐻𝐸𝐹^=𝐻𝐴𝐹^(Cùng chắn cung HF của (AEHF))

ˆHAF=ˆABC𝐻𝐴𝐹^=𝐴𝐵𝐶^⇒ EF là tiếp tuyến (BH)

c. Ta sẽ chứng minh ˆAIH=ˆKAC𝐴𝐼𝐻^=𝐾𝐴𝐶^

Ta có: ˆKAC=ˆHAC𝐾𝐴𝐶^=𝐻𝐴𝐶^ (tính chất đối xứng)

ˆHAC=ˆAHE𝐻𝐴𝐶^=𝐴𝐻𝐸^ (so le trong) ˆKAC=ˆAHE⇒𝐾𝐴𝐶^=𝐴𝐻𝐸^

ˆAIH=ˆAHE𝐴𝐼𝐻^=𝐴𝐻𝐸^ (tính chất đối xứng)

Vậy ˆAIH=ˆKAC𝐴𝐼𝐻^=𝐾𝐴𝐶^ (Cùng = ˆAHE𝐴𝐻𝐸^)

Mà AC // IH (tứ giác AEHF là hình chữ nhật)

ˆAIH⇒𝐴𝐼𝐻^ và ˆKAC𝐾𝐴𝐶^ đồng vị  I, A, K thẳng hàng

29 tháng 4 2018

HS tự chứng minh

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em

30 tháng 12 2018

A H B C M I D K F P Q G Note:Hình hơi lệch xíu ^^

a, Vì CM là tiếp tuyến của (A)

=> \(CM\perp AM\)

=> ^CMA = 90o

=> M thuộc đường tròn đường kính AC

Vì ^CHA = 90o

=> H  thuộc đường tròn đường kính AC

Do đó : M và H cùng  thuộc đường tròn đường kính AC

hay 4 điểm A,C,M,H cùng thuộc đường tròn đường kính AC

b, Vì AM = AH ( Bán kính)

       CM = CH (tiếp tuyến)

=> AC là trung trực MH

=> \(AC\perp MH\)tại I

Xét \(\Delta\)AMC vuông tại M có MI là đường cao 

\(\Rightarrow MA^2=AI.AC\)(Hệ thức lượng)

c, Vì CM , CH là tiếp tuyến của (A)

=> AC là phân giác ^HAM

=> ^HAC = ^MAC 

Mà ^HAC + ^HAB  = 90o

=> ^MAC + ^HAB = 90o

Ta có: ^BAD + ^BAC + ^CAM = 180o (Kề bù)

=> ^BAD  + 90o + ^CAM = 180o

=> ^BAD + ^CAM = 90o

Do đó ^BAD = ^BAH (Cùng phụ ^CAM)

Xét \(\Delta\)BAD và \(\Delta\)BAH có:

AB chung

^BAD = ^BAH (cmt)

AD = AH (Bán kính (A) )

=> \(\Delta BAD=\Delta BAH\left(c.g.c\right)\)

=> ^ADB = ^AHB = 90o

\(\Rightarrow BD\perp AD\)

=> BD là tiếp tuyến của (A)

Làm đc đến đây thôi :(

10 tháng 2 2022

Bn tk câu a và c nha:

undefined

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn...
Đọc tiếp

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC

2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB

3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)

4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)

5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O

6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD

0