K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10:

a: (SB;(ABC))=(BS;BA)=góc BSA

tan BSA=AB/SA=1/căn 3

=>góc BSA=30 độ

b: BC vuông góc AB

BC vuông góc SA

=>BC vuông góc (SAB)

=>BC vuông góc AH

mà AH vuông góc SB

nên AH vuông góc (SBC)

=>AH vuông góc SC

mà HK vuông góc SC

nên SC vuông góc (AHK)

31 tháng 8 2021

cosx = 3m + cos2x + 1

⇔ 2cos2x - cosx + 3m = 0 (1)

Đặt cosx = t. Ta được phương trình : 2t2 - t + 3m = 0.

⇔ 2t2 - t = -3m

(2) là phương trình hoành độ giao điểm của f(t) = 2t2 - t và y = - 3m

Khi x ∈ \(\left(-\pi;-\dfrac{\pi}{2}\right)\) thì t ∈ (- 1 ; 0)

(1) có 1 nghiệm trên \(\left(-\pi;-\dfrac{\pi}{2}\right)\) ⇔ (2) có 1 nghiệm t ∈ (- 1 ; 0)

⇒ f(0) < - 3m < f(-1)

⇒ 0 < - 3m < 3

 ⇒ - 1 < m < 0 (1)

Khi x ∈ \(\left(-\dfrac{\pi}{2};\dfrac{\pi}{2}\right)\) thì t ∈ (0 ; 1].

(1) có 2 nghiệm trên \(\left(-\dfrac{\pi}{2};\dfrac{\pi}{2}\right)\) khi vầ chỉ khi (2) có 2 nghiệm trên (0 ; 1].

⇒ \(f\left(\dfrac{1}{4}\right)< -3m< f\left(0\right)\)

⇒ \(-\dfrac{1}{8}< -3m< 0\)

⇒ 0 < m < \(\dfrac{1}{24}\) (2)

Từ (1), (2) => Không có m thỏa mãn yêu cầu bài toán

10 tháng 8 2021

Ta có : \(\left(\sin\dfrac{x}{2}+\cos\dfrac{x}{2}\right)^2+\sqrt{3}\cos x=2\)

\(\Leftrightarrow\sin^2\dfrac{x}{2}+2\sin\dfrac{x}{2}.\cos\dfrac{x}{2}+\cos^2\dfrac{x}{2}+\sqrt{3}\cos x-2=0\)

\(\Leftrightarrow1+\sin x+\sqrt{3}\cos x-2=0\)

\(\Leftrightarrow\sin x+\sqrt{3}\cos x=1\)

\(\Leftrightarrow\sin x.\cos\dfrac{\pi}{3}+\cos x.\sin\dfrac{\pi}{3}=\sin\left(x+\dfrac{\pi}{3}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{3}=\dfrac{\pi}{6}+k2\pi\\x+\dfrac{\pi}{3}=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\) \(\left(K\in Z\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{6}+k2\pi\\x=\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\) \(\left(K\in Z\right)\)

Vậy ...

NV
4 tháng 8 2021

Gọi G là trọng tâm tam giác \(\Rightarrow\) G cố định

Do tam giác ABC đều \(\Rightarrow\widehat{GAB}=\widehat{GAC}=\dfrac{1}{2}.60^0=30^0\)

Đồng thời \(\widehat{AGC}=\dfrac{1}{3}.360^0=120^0\)

Xét 2 tam giác GAP và GCQ có: \(\left\{{}\begin{matrix}AP=CQ\\\widehat{GAB}=\widehat{GAC}\\AG=CG\end{matrix}\right.\) \(\Rightarrow\Delta GAP=\Delta GCQ\)

\(\Rightarrow\left\{{}\begin{matrix}GP=GQ\\\widehat{PGA}=\widehat{QGC}\Rightarrow\widehat{PGQ}=\widehat{AGC}=120^0\end{matrix}\right.\)

\(\Rightarrow\) Q là ảnh của P qua phép quay tâm G góc 120 độ, C là ảnh của A qua phép quay tâm G góc 120 độ

\(\Rightarrow Q_{\left(G;120^0\right)}\left(\overrightarrow{AP}\right)=\overrightarrow{CQ}\)

b. Theo cmt, do \(\Delta GAP=\Delta GCQ\Rightarrow\widehat{GPA}=\widehat{GQC}\)

Mà \(\widehat{GQC}+\widehat{GQA}=180^0\Rightarrow\widehat{GPA}+\widehat{GQA}=180^0\)

\(\Rightarrow\) Tứ giác APGQ nội tiếp hay đường tròn (APQ) luôn đi qua G cố định

NV
4 tháng 8 2021

undefined