Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I don't now
...............
.................
a) ta có: n -6 chia hết cho n - 2
=> n - 2 - 4 chia hết cho n - 2
mà n - 2 chia hết cho n - 2
=> 4 chia hết cho n - 2
=> n - 2 thuộc Ư(4)={1;-1;2;-2;4;-4}
...
rùi bn tự xét giá trị để tìm n nha
câu b;c ;ebn làm tương tự như câu a nha
d) ta có: 3n -1 chia hết cho 11 - 2n
=> 2.(3n-1) chia hết cho 11 - 2n
6n - 2 chia hết cho 11 - 2n
=> -2 + 6n chia hết cho 11 - 2n
=> 31 - 33 + 6n chia hết cho 11 - 2n
=> 31 - 3.(11-2n) chia hết cho 11 - 2n
mà 3.(11-2n) chia hết cho 11 - 2n
=> 31 chia hết cho 11 - 2n
=> 11 - 2n thuộc Ư(31)={1;-1;31;-31)
...
2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1
Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1
3) Ta có : 5n - 1 chia hết chi n - 2
=> 5n - 10 + 9 chia hết chi n - 2
=> 5(n - 2) + 9 chia hết chi n - 2
=> n - 2 thuộc Ư(9) = {1;3;9}
Ta có bảng :
n - 2 | 1 | 3 | 9 |
n | 3 | 5 | 11 |
1) Ta có : 2n + 3 chia hết cho 3n + 1
<=> 6n + 9 chia hết cho 3n + 1
<=> 6n + 2 + 7 chia hết cho 3n + 1
=> 7 chia hết cho 3n + 1
=> 3n + 1 thuộc Ư(7) = {1;7}
Ta có bảng :
3n + 1 | 1 | 7 |
3n | 0 | 6 |
n | 0 | 2 |
Vậy n thuộc {0;2}
a) 3n + 7 chia hết cho n
Ta có : 3n chia hết cho n
Để 3n + 7 chia hết cho n
thì 7 phải chia hết cho n
\(\Rightarrow\) n \(\in\) \(Ư\left(7\right)=\left\{1;7\right\}\)
Vậy n \(\in\left\{1;7\right\}\) .
a) có 2n -4 chia hết cho n-1
=> (2n -2 ) -2 chia hết cho n -1
=> 2(n-1) -2 chia hết cho n-1
ta thấy 2(n-1) chia hết cho n-1
=> 2 chia hết cho n-1
=> n-1 \(\in\)Ư(2 ) = { 1: 2;-1;-2}
=> n \(\in\){ 2, 3;0;-1}
mà n \(\in\) N
=> n\(\in\) {2;3;0}
b) có 27 - 5n chia hết cho n+3
=> ( -5n -15) + 42 chia hết cho n+3
=> -5( n+3 ) +42 chia hết cho n+3
ta thấy -5 ( n+3 ) chia hết cho n+3
=> 42 chia hết cho n+3
=> n+3 \(\in\)Ư(42)={1;2;3;6;7;14;21;42}
=> n\(\in\) { -2 ; -1;1;3;4;11;18;39}
mà n \(\in\) N
=> n \(\in\) {1;3;4;11;18;39}
#)Giải :
1) \(\frac{n+7}{n+3}=\frac{n+3+4}{n+3}=\frac{n+3}{n+3}+\frac{4}{n+3}=1+\frac{4}{n+3}\)
\(\Rightarrow n+3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Lập bảng xét các Ư(4) rồi chọn ra các gt thỏa mãn
a) Ta có: n + 7 = (n + 3) + 4
Do n + 3 \(⋮\)n + 3 => 4 \(⋮\)n + 3
=> n + 3 \(\in\)Ư(4) = {1; -1; 2; -2; 4; -4}
Lập bảng :
n + 3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | -2 | -4 | -1 | -5 | 1 | -7 |
Vậy ...
b) Ta có: 2n + 5 = 2(n + 3) - 1
Do 2(n + 3) \(⋮\)n + 3 => 1 \(⋮\)n + 3
=> n + 3 \(\in\)Ư(1) = {1; -1}
Với: n + 3 = 1 => n = 1 - 3 = -2
n + 3 = -1 => n= -1 - 3 = -4
Vậy ...
Vì 2n + 1 chia hết cho 2n - 1
=> (2n - 1) + 2 chia hết cho 2n - 1
Mà 2n - 1 chia hết cho 2n - 1
=> 2 chia hết cho 2n - 1
=> 2n - 1 thuộc Ư(2) = {-1;1-2;2}
Ta có :
Vì 2n + 1 chia hết cho 2n - 1
=> (2n - 1) + 2 chia hết cho 2n - 1
Mà 2n - 1 chia hết cho 2n - 1
=> 2 chia hết cho 2n - 1
=> 2n - 1 thuộc Ư(2) = {-1;1-2;2}
Ta có :