Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.=5xy\left(x-2y\right)\)
\(2.=\left(5-y\right)\left(x-y\right)\)
\(3.=y\left(x-z\right)-7\left(x-z\right)=\left(y-7\right)\left(x-z\right)\)
\(5.=2x\left(3y-7z\right)-6y\left(3y-7z\right)=\left(2x-6y\right)\left(3y-7x\right)\)
\(4.=27x^2\left(y-1\right)+9x^3\left(y-1\right)=9x^2\left(3+x\right)\left(y-1\right)\)
a) Áp dụng bài toán sau : a + b + c = 0 \(\Rightarrow\)a3 + b3 + c3 = 3abc
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=3.\frac{1}{x}.\frac{1}{y}.\frac{1}{z}\)
Ta có : \(A=\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}=\frac{xyz}{x^3}+\frac{xyz}{y^3}+\frac{xyz}{z^3}\)
\(A=xyz.\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz.3.\frac{1}{xyz}=3\)
b) x2 + y2 + z2 - xy - 3y - 2z + 4 = 0
4x2 + 4y2 + 4z2 - 4xy - 12y - 8z + 16 = 0
( 4x2 - 4xy + y2 ) + ( 3y2 - 12y + 12 ) + ( 4z2 - 8z + 4 ) = 0
( 2x - y )2 + 3 ( y - 2 )2 + 4 ( z - 1 )2 = 0
Ta có : ( 2x - y )2 \(\ge\)0 ; 3 ( y - 2 )2 \(\ge\)0 ; 4 ( z - 1 )2 \(\ge\)0
Mà ( 2x - y )2 + 3 ( y - 2 )2 + 4 ( z - 1 )2 = 0
\(\Rightarrow\)\(\hept{\begin{cases}2x-y=0\\y-2=0\\z-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=2\\z=1\end{cases}}}\)
Vậy ....