K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2016

Đặt d ϵ Ư( 2n+1; 2n+3) ĐK: d ϵ N*

=> 2n+1 chia hết cho d, 2n+3 chia hết cho d

=> (2n+3)-(2n+1) chia hết cho d

=> 2 chia hết cho d => d ϵ Ư(2) => d ϵ {1;2} (vì d ϵ N*)

Mặt khác, d là ước của 2 số lẻ 2n+1 và 2n+3 nên d=1.

=> Ư(2n+1; 2n+3)=1

Vậy 2n+1 và 2n+3 là hai số nguyên tố cùng nhau.

  

 

20 tháng 10 2015

1) Coi a< b

ƯCLN (a;b) = 56 . Đặt a = 56m; b = 56n (m; n nguyên tố cùng nhau và m < n)

a + b = 224 => 56m + 56n = 224 => m + n = 4 => m = 1; n =3 => a = 56 và b = 168

Vậy...

2) Gọi d = ƯCLN(2n + 2; 2n+ 3) 

=> 2n + 1 chia hết cho d; 2n +3  chia hết cho d

=> 2n + 3 - (2n + 1) chia hết cho d => 2 chia hết cho d => d = 1 hoặc d = 2

Mà 2n + 1 lẻ nên 2n + 1 không chia hết cho 2 => d = 1

Vậy...

3) Áp dụng công thức ƯCLN(a;b) . BCNN(a;b) = a.b => ƯCLN(a;b) = 2400 : 120 = 20

Đặt a = 20m; b= 20n( m; n nguyên tố cùng nhau; coi m< n)

a.b = 20m.20n = 400mn = 2400 => m.n = 6 = 1.6 = 2.3

+) m = 1; n = 6 => a = 20; b = 120

+) m = 2; n = 3 => a = 40; b = 60

Vây,...

4) a chia hết cho b nên BCNN(a;b) = a = 18

=> b \(\in\)Ư(18) = {1;2;3;6;9;18}

vậy,,,

12 tháng 11 2016

khó quá không làm được

21 tháng 11 2018

\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)

\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)

Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3

Giả sử: 2n+1 chia hết cho 3

=> 2n+1-3 chia hết cho 3

=> 2n-2 chia hết cho 3

=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3

Giả sử: 7n+2 chia hết cho 3

=> 7n+2-9 chia hết cho 3

=>.........

Vậy với n khác 3k+1;3k+2 thì thỏa mãn

21 tháng 11 2018

MK nhầm chỉ khác 3k+1 nha bỏ đoạn dưới

4 tháng 12 2017

Gọi UCLN(2n+1; 2n+3) là d

Ta có:2n+1 chia hết cho d =>2n+3-2n+1 chia hết cho d =>2chia hết cho d =>d thuộc {1:2}

          2n+3 chia hết cho d 

Mà 2n+1 là số lẻ =>d Không thuộc {2}

Vậy d thuộc {1}=>2n+1 và 2n+3 là 2 số nguyên tố cùng nhau. 

\(\text{Gọi }\left(2n+1,2n+3\right)=d\)

\(\Rightarrow\hept{\begin{cases}\left(2n+1\right)⋮d\\\left(2n+3\right)⋮d\end{cases}}\)

\(\Rightarrow\left(2n+3\right)-\left(2n+1\right)=2⋮d\)

\(\Rightarrow d\in\left\{1;2\right\}\)

\(\text{Dễ thấy }\hept{\begin{cases}2n+1\text{không chia hết cho 2 }\\2n+3\text{không chia hết cho 2 }\end{cases}}\)

\(\Rightarrow d\ne2\Rightarrow d=1\)

\(\text{Vậy }\left(2n+1,2n+3\right)=1\)

14 tháng 12 2016

hum ....to chiu

 

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

20 tháng 12 2018

Gọi:

d=UCLN(n,n-1)

Ta có: n chia hết cho d

n-1 chia hết cho d

=> n-(n-1) chia hết cho d

=> 1 chia hết cho d=> d=1

Vậy: n và n-1 ntcn 

b) gọi như vậy ta có:

7(2n+1)-14n+6 chia hết cho d

=> 1 chia hết cho d=>d=1

Vậy 2n+1 và 14n+6 ntcn

13 tháng 12 2016

1. Vì p+3>2 =>p+3 là số lẻ =>p là số chẵn mà p là số nguyên tố =>p=2

2.Ta gọi ƯCLN(n+1;2n+3) là a với a là số tự nhiên

=>n+1;2n+3 chia hết cho a

=>2.(n+1);2n+3 chia hết cho a

=>2n+2;2n+3 chia hết cho a

=>(2n+3)-(2n+2) chia hết cho a

=>1 chia hết cho a

=>a=1

=>n+1 và 2n+3 là hai số nguyên tố cùng nhau

7 tháng 12 2018

a) Đặt UCLN ( n ; n - 1 ) = d

=> n chia hết cho d ; n - 1 chia hết cho d

=> n - ( n - 1 ) chia hết cho d

=> n - n + 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> n và n - 1 là 2 số nguyên tố cùng nhau

b,Đặt UCLN ( 2n + 1 ; 14n + 6 ) = d

=> 2n + 1 chia hết cho d ; 14n + 6 chia hết cho d

=> 7 ( 2n + 1 ) chia hết cho d ; 14n + 6 chia hết cho d

=> 14n + 7 chia hết cho d ; 14n + 6 chia hết cho d

=> ( 14n + 7 ) - ( 14n + 6 ) chia hết cho d

=> 14n + 7 - 14n - 6  chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n + 1 và 14n + 6 là 2 số nguyên tố cùng nhau