\(\frac{a}{b}\)<1.Chứng minh rằng \(\frac{a+m}{b+m}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2017

ta có

a,\(\frac{a}{b}< 1\Leftrightarrow a< b\Leftrightarrow a+m< b+m\)

vì \(a+m< b+m\)

nên \(\frac{a+m}{b+m}< 1\)

b,Ta có    \(a+b>1\Leftrightarrow a+m>b+m\)

Vì \(a+m>b+m\)

nên \(\frac{a+m}{b+m}>1\)

22 tháng 6 2020

Bài làm:

a) Vì \(\frac{13}{15}< 1\)\(\Rightarrow\frac{13}{15}< \frac{13+11}{15+11}=\frac{24}{26}\)

b) Vì \(\frac{13}{15}< 1\)\(\Rightarrow\frac{13}{15}< \frac{13+10}{15+10}=\frac{23}{25}\)

c) Vì \(\frac{3}{5}< 1\)\(\Rightarrow\frac{3}{5}< \frac{3+30}{5+30}=\frac{33}{35}\)

Học tốt!!!!

22 tháng 6 2020

1 lớp học có 2 học sinh một bạn bị chết hỏi còn bao nhiêu bạn

29 tháng 5 2015

a.    a/b < 1 => a < b => a.m < b.m => a.b +a.m < a.b +b.m => \(\frac{a}{b}<\frac{a+m}{b+m}\)

b.   a/b > 1 => a > b => a.m > b.m => a.b +a.m > a.b +b.m => \(\frac{a}{b}>\frac{a+m}{b+m}\)

25 tháng 2 2018

a. Ta có

\(B=\frac{2011+2012}{2012+2013}=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}.\)

\(\frac{2011}{2012+2013}< \frac{2011}{2012}.\)(1)

\(\frac{2012}{2012+2013}< \frac{2012}{2013}.\)(2)

Cộng vế với vế của 1;2 ta được

\(B=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}< A=\frac{2011}{2012}+\frac{2012}{2013}\)

hay A>B

Làm ơn giúp mk, mk đang cần gấp!!!

21 tháng 7 2016

a) Vì a > b

=> a.n > b.n

=> a.n + a.b > b.n + a.b

=> a.(b + n) > b.(a + n)

=> a/b > a+n/b+n ( đpcm)

Câu b và c lm tương tự

5 tháng 9 2019

Vì \(a< b< c< d< m< n\)

\(\Rightarrow\hept{\begin{cases}a+c+m< 3a\\a+b+c+d+m+n< 6a\end{cases}}\)

\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{3a}{6a}\)

\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\left(đpcm\right)\)

5 tháng 9 2019

                                                             Bài giải

Ta có : \(a< b\text{ }\Rightarrow\text{ }2a< a+b\)

        \(c< d\text{ }\Rightarrow\text{ }2c< c+d\)

         \(m< n\text{ }\Rightarrow\text{ }2m< m+n\)

\(\Rightarrow\text{ }2a+2c+2m< \left(a+b+c+d+m+n\right)\) \(\Leftrightarrow\text{ }2\left(a+c+m\right)< \left(a+b+c+d+m+n\right)\)

\(\Rightarrow\text{ }\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)

9 tháng 7 2016

\(\frac{a}{b}>1\Rightarrow a>b>m\)

Ta có:

\(\frac{a-m}{b-m}=\frac{ab-bm}{\left(b-m\right).b}\)

\(\frac{a}{b}=\frac{ab-am}{\left(b-m\right).b}\)

\(am>bm\left(a>b\right)\)

\(\Rightarrow ab-bm>ab-am\)

\(\Rightarrow\frac{a-m}{b-m}>\frac{a}{b}\left(1\right)\)

\(\frac{a+m}{b+m}=\frac{ab+bm}{\left(b+m\right).b}\)

\(\frac{a}{b}=\frac{ab+am}{\left(b+m\right).b}\)

\(bm< am\left(b< a\right)\)

\(\Rightarrow ab+bm< ab+am\)

\(\Rightarrow\frac{a+m}{b+m}< \frac{a}{b}\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow\frac{a-m}{b-m}>\frac{a}{b}>\frac{a+m}{b+m}\)

9 tháng 7 2016

+ Do a/b > 1

=> a > b

=> a.m > b.m

=> a.b - a.m < a.b - b.m

=> a.(b - m) < b.(a - m)

=> a/b < a-m/b-m (1)

Do a/b > 1

=> a > b

=> a.m > b.m

=> a.m + a.b > b.m + a.b

=> a.(b + m) > b.(a + m)

=> a/b > a+m/b+m (2)

Từ (1) và (2) => a-m/b-m > a/b > a+m/b+m

Ủng hộ mk nha ☆_☆^_-

10 tháng 3 2016

tìm trên mạng có đó bạn đừng đăng lên đây

28 tháng 2 2017

\(\frac{a}{b}>1\)

\(\Leftrightarrow a>b\)

\(\Leftrightarrow an>bn\)

\(\Leftrightarrow ab+an>ab+bn\)

\(\Leftrightarrow a\left(b+n\right)>b\left(a+n\right)\)

\(\Rightarrow\frac{a}{b}>\frac{a+n}{b+n}\) (đpcm)

28 tháng 2 2017

a/b=a(b+m)/b(b+m)=ab+am/b(b+m)                      (1)

a+b/b+m=b(a+m)/b(b+m)=ba+am/b(b+m)             (2)

a/b>1=>a>b=>am>bm=>ab+am>ab+bm              (3)

Tu (1),(2) va (3).Suy ra a/b>a+m/b+m (dccm)