Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 : (Bạn thông cảm hơi mờ chút )
\(=-301.\left[1+\left(-7\right)^4+\left(-7\right)^7+...+\left(-7\right)^{2005}\right]\)
\(=43.\left(-7\right).\left[1+\left(-7\right)^4+\left(-7\right)^7+...+\left(-7\right)^{2005}\right]\) chia hết cho 43
Câu 3 :
*Điều kiện đủ :
Nếu m và n chia hết cho 3 thì m2 ;n2 và mn chia hết cho 3 do đó m2 + mn + n2 chia hết cho 9
*Điều kiện cần :
Ta có :\(m^2+mn+n^2=\left(m-n\right)^2+3mn\) (*)
Nếu m2 + mn + n2 chia hết cho 9 thì từ (*) ta suy ra (m - n)2 chia hết cho 3 <=> (m - n) chia hết cho 3 (1)
Mà (m - n)2 chia hết cho 9 và 3mn chia hết cho 9 => mn chia hết cho 3 => m hoặc n chia hết cho 3 (2)
Từ (1) và (2) => cả 2 số m,n đều chia hết cho 3
a) \(3^{n+2}+3^n-2^{n+2}-2^n\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.2.5\)chia hết cho 10
b)\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(=3^{n+1}\left(3^2+1\right)+2^{n+2}\left(2+1\right)\)
\(=3^{n+1}.10+2^{n+2}.3\)
\(=3^n.3.2.5+2^{n+1}.2.3\)chia hết cho 6
\(\frac{a}{b}=\frac{c}{d}\\ \Rightarrow\frac{a}{c}=\frac{b}{d}\\ \Rightarrow\frac{a^n}{c^n}=\frac{b^n}{d^n}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a^n}{c^n}=\frac{b^n}{d^n}=\frac{a^n+b^n}{c^n+d^n}=\frac{a^n-b^n}{c^n-d^n}\)
hay \(\frac{a^n+b^n}{c^n+d^n}=\frac{a^n-b^n}{c^n-d^n}\) (với mọi \(n\in N\))
2m + 2n = 2m+n
=> 2m = 2m+n - 2n = 2n.(2m - 1)
Dễ thấy m \(\ne0\Rightarrow2^m⋮2\)
Mà 2m - 1 chia 2 dư 1 nên \(\begin{cases}2^m=2^n\\2^m-1=1\end{cases}\)\(\Rightarrow\begin{cases}m=n\\2^m=2=2^1\end{cases}\)=> m = n = 1
Vậy m = n = 1
2m - 2n = 256
=> 2n.(2m-n - 1) = 28
Dễ thấy: \(2^{m-n}-1\ne0\Rightarrow2^{m-n}\ne1\) => m - n \(\ne0\)
\(\Rightarrow2^{m-n}⋮2\)
=> 2m-n - 1 chia 2 dư 1
=> \(\begin{cases}2^n=2^8\\2^{m-n}-1=1\end{cases}\)\(\Rightarrow\begin{cases}n=8\\2^{m-n}=2=2^1\end{cases}\)\(\Rightarrow\begin{cases}n=8\\m-n=1\end{cases}\)\(\Rightarrow\begin{cases}n=8\\m=9\end{cases}\)
Vậy n = 8; m = 9
1.
\(B=\frac{1}{\left(n-1\right)^2+3}\)
Ta có (n-1)2\(\ge0\Rightarrow\left(n-1\right)^2+3\ge3\)
=> \(B=\frac{1}{\left(n-1\right)^2+3}\le\frac{1}{3}\)
maxB=1/3 <=> n-1=0<=>n=1
2. \(A=\frac{m+3}{m-3}=\frac{m-3+6}{m-3}=1+\frac{6}{m-3}\)
A thuộc Z <=> \(\frac{6}{m-3}\)thuộc Z <=> m-3 là ước của 6 <=>\(m-3\in\left\{-6;-3;-2;1;2;3;6\right\}\)<=> \(m\in\left\{-3;0;1;4;5;6;9\right\}\)
3.
\(3^{2012}-2.9^{1005}=3^{2012}-2.3^{2010}=3^{2010}\left(3^2-2\right)=3^{2012}.7\)chia hết cho 7
a) Tự làm -.-
b) Ta có:
\(A=n^5-5n^3+4n=n.\left(n^4-5n^2+4\right)\)
\(A=n.\left(n^4-n^2-4n^2+4\right)\)
\(A=n.[n^2.\left(n^2-1\right)-4.\left(n^2-1\right)]\)
\(A=n.\left(n^2-1\right).\left(n^2-4\right)\)
\(A=n.\left(n-1\right).\left(n-1\right).\left(n-2\right).\left(n+2\right)\)
\(A=\left(n-2\right).\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\)
Vì \(n-2;n-2;n;n+1;n+2\) là tích của 5 số nguyên liên tiếp 3,5,8.
\(\Rightarrow\)\(A=\left(n-2\right).\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\) chia hết cho \(120\left(3.5.8\right)\)
Vậy \(n^5-5n^3+4n\) chia hết cho 120. ( đpcm )
Tui lm câu a nhé
\(m\in N^{\circledast};n\in N^{\circledast};a\in Z\\ m=1;n=1;a=1\)
Đùa đấy
\(\left(a^m\right)^n=a^m\cdot a^m\cdot a^m\cdot...\cdot a^m\left(n\text{ thừa số }a^m\right)\\ =a^{m+m+m+...+m}\left(n\text{ số }m\right)\\ =a^{m\cdot n}\)