K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(a^2+b^2+c^2\ge2\left(ab+bc+ac\right)=2\times9=18\)
 

1 tháng 1 2019

Nguyễn Quỳnh Anh Sai rồi nhé!

Bất đẳng thức đã cho tương đương với:
(b+c)^2−a(b+c)+a^2/3−3bc>0
⇔(b+ca/2)^2+(a^3−36)/12a>0
BĐT này luôn đúng do a^3>36>0
Vậy ta có đpcm

30 tháng 4 2019

ban co the giai ky ra cho minh dc ko thanks

AH
Akai Haruma
Giáo viên
8 tháng 5 2018

Bài 1:

Sử dụng biến đổi tương đương. Ta có:

\(a^5+b^5\geq a^3b^2+a^2b^3\)

\(\Leftrightarrow a^5+b^5-a^3b^2-a^2b^3\geq 0\)

\(\Leftrightarrow a^3(a^2-b^2)-b^3(a^2-b^2)\geq 0\)

\(\Leftrightarrow (a^3-b^3)(a^2-b^2)\geq 0\)

\(\Leftrightarrow (a-b)^2(a^2+ab+b^2)(a+b)\geq 0\) (luôn đúng với mọi $a,b$ dương)

Ta có đpcm.

Dấu bằng xảy ra khi \((a-b)^2=0\Leftrightarrow a=b\)

Bài 2: Sử dụng kết quả bài 1:

\(a^5+b^5\geq a^3b^2+a^2b^3\Rightarrow a^5+b^5+ab\geq a^3b^2+a^2b^3+ab\)

\(\Rightarrow \frac{ab}{a^5+b^5+ab}\leq \frac{ab}{a^3b^2+a^2b^3+ab}=\frac{1}{a^2b+ab^2+1}=\frac{1}{a^2b+ab^2+abc}=\frac{1}{ab(a+b+c)}\)

Hoàn toàn tt:

\(\frac{bc}{b^5+c^5+bc}\leq \frac{1}{bc(a+b+c)}; \frac{ca}{c^5+a^5+ac}\leq \frac{1}{ac(a+b+c)}\)

Do đó:
\(P\leq \frac{1}{ab(a+b+c)}+\frac{1}{bc(a+b+c)}+\frac{1}{ac(a+b+c)}\). Thay \(1=abc\)

\(\Leftrightarrow P\leq \frac{c}{a+b+c}+\frac{a}{a+b+c}+\frac{b}{a+b+c}=1\) (đpcm)

 

 

11 tháng 5 2018

Em xin cảm ơn!