K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2016

Ta có

\(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)+a^2+b^2+c^2=\left(a+b+c\right)^2\)

\(\Leftrightarrow4\left(a^2+b^2+c^2\right)\ge\frac{4}{3}.\left(a+b+c\right)^2=\frac{4}{3}.\frac{9}{16}=\frac{3}{4}\)

Đạt được khi \(a=b=c=\frac{1}{4}\)

10 tháng 11 2016

cửa hàng bán đc 640kg nhá

27 tháng 2 2018

xem trên mạng

27 tháng 2 2018

mình quỳ bạn luôn Nhân Thiên Hoàng ạ kiệt lên mạng hỏi mà mày lại bảo vậy thì thua luôn

4 tháng 6 2019

#)Giải :

Ta có : \(P=a^4+b^4+2-2-ab\)

Áp dụng BĐT cô si, ta có : 

\(a^4+1\ge2a^2\)dấu = xảy ra khi a = 1

\(b^4+1\ge2b^2\)dấu = xảy ra khi b = 1

Khi đó \(P\ge2a^2+2b^2-2-ab\)

           \(P\ge2\left(a^2+b^2+ab\right)-2-3ab\)

           \(P\ge4-3ab\)( thay \(a^2+b^2+ab=3\)vào ) (1)

Mặt khác \(a^2+b^2\ge2ab\)

Khi đó \(a^2+b^2+ab=3\ge2ab+ab=3ab\)

\(\Rightarrow ab\le1\)(2)

Từ (1) và (2)

Ta có : \(P\ge4-3ab\ge4-3=1\)

Vậy P đạt GTNN là 1 khi a = b = 1

                #~Will~be~Pens~#

7 tháng 6 2019

ta có:

P=\(a^4+b^4+4ab=\left(a^2+b^2\right)^2-2a^2b^2+4ab=16+ab\left(4-2ab\right)=16+ab\left(a^2+b^2-2ab\right)=16+ab\left(a-b\right)^2\ge16\)xảy ra khi a=b=\(\sqrt{2}\)

a,b cũng có thể trái dấu mà bạn?Khi đó thì \((a-b)^2\) sẽ <0 r

 

\(\left(a+b+c\right)^2=0\)

\(\Leftrightarrow2ab+2bc+2ac=-2009\)

\(\Leftrightarrow ab+bc+ac=-\dfrac{2009}{2}\)

\(\Leftrightarrow\left(ab+bc+ac\right)^2=\dfrac{4036081}{4}\)

\(\Leftrightarrow a^2b^2+a^2c^2+b^2c^2=\dfrac{4036081}{4}\)

\(a^2+b^2+c^2=2009\)

nên \(a^4+b^4+c^4+2\left(a^2b^2+a^2c^2+b^2c^2\right)=4036081\)

\(\Leftrightarrow a^4+b^4+c^4=\dfrac{4036081}{2}\)