K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 8 2023

Lời giải:

$b=a+1=5+1=6$. Khi đó:

$(a+b)^2-(b-a)^3+2021=(5+6)^2-(6-5)^3+2021$

$=11^2-1^3+2021=121-1+2021=2141$

27 tháng 8 2023

đúng không đó ạ

17 tháng 8 2016

Ta có a> 2 và b>2 nên a(b-2)>0 và b(a-2) >0. 
Vậy a(b-2)+b(a-2) >0 <=> 2[ab -a -b] >0 <=> ab > a+ b.

20 tháng 1 2016

a) Ta có: -a - b - b = -a - b + c

Vậy: (-a-b+c) - (-a-b-c) = (-a-b+c) - (-a-b+c) = (-a-b+c) : 2

b) (-1-1+-2) : 2 = (-2+-2) : 2 = (-4) : 2 = -2

27 tháng 8 2023

a, A = 1010 + 56

    A = \(\overline{100...0056}\)  ( 8 chữ số 0)

    56 ⋮ 4 ⇒ A ⋮ 4;  

Xét tổng chữ số của số A ta có:

     1 + 0 x 8 + 5 + 6 = 12 ⋮ 3 ⇒ A ⋮ 3

Vì 3;  4 là hai số nguyên tố cùng nhau nên A ⋮ 3.4 = 12 (đpcm)

      

 

11 tháng 12 2021

có [x-y]2=1

suy ra [x-y]mũ 2= 1 mũ 2

suy ra x-1=1

x=1+1

x=2

11 tháng 12 2021

x = 2 nha bạn

20 tháng 9 2017

Bài 1:

a) 3500 = 3100.5 = (35)100 = 243100

5300 = 5100.3 = (53)100 = 125100

Vì 243100 > 125100 nên 3500 > 5300

b) Không thể biết, nếu n > 100 thì thừa lớn hơn, nếu n < 9 thì thừa bé hơn.

1 tháng 8 2019

a) 2112 . 3163

...1 . ...6

...6  

b) 415 

= (42)7 . 4

= (...6). ...4

...4

c) 7123

= (74)30 . 73

= (...1)30 . ...3

...1 . ...3

...3

d) 8567

= (84)141 . 83

= (...6)141 . ...2

...6 . ...2

...2

~Study well~

#Thạc_Trân

1 tháng 8 2019

Số tận cùng của 2112 . 3163 là 6

Số tận cùng của 415 là 4

Số tận cùng của 7123 là 7

Số tận cùng của 8567 là 8

10 tháng 8 2018

\(A=1+2^2+2^3+...+2^{2018}\)

\(2A=2+2^2+...+2^{2019}\)

\(2A-A=\left(2+2^2+...+2^{2019}\right)-\left(1+2^2+2^3+...+2^{2018}\right)\)

\(A=2^{2019}-1\)

\(\Rightarrow A+1=2^{2019}-1+1=2^{2019}\)

\(\Rightarrow A+1\)là một lũy thừa

                            đpcm

10 tháng 8 2018

mạo phép chỉnh đề

\(A=1+2+2^2+2^3+...+2^{2018}\)

=> \(2A=2+2^2+2^3+2^4+....+2^{2019}\)

=>  \(2A-A=\left(2+2^2+2^3+2^4+...+2^{2019}\right)-\left(1+2+2^2+2^3+....+2^{2018}\right)\)

=>  \(A=2^{2019}-1\)

=>  \(A+1=2^{2019}\)

Vậy  A+ 1 là một lũy thừa