Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1 Với a=0 thì b=8
TH2 Với a chẵn thì 3b chẵn dẫn đến b lẻ
b chẵn
225 lẻ , a \(\ne\)0
=> 2016a + 3b + 1 lẻ và \(2016^a\)+2016a+b lẻ
a\(\ne\)0
=> 3b + 1 lẻ
=> b lẻ
b lẻ thì 3b+1 chẵn (mâu thuẫn)
=>a=0
=>(3b+1)(b+1)=225=\(3^2.5^2\) và 3b+1 > b+1
tự lập bảng nha
Vậy (a,b)=(0,8)
Trả lời:
( 2016a + 3b+1 )(2016a+ 2016a +b ) = 225 (1)
Mà 225 là số lẻ.
\(\Rightarrow\)( 2016a + 3b+1 ); (2016a+ 2016a +b ) là số lẻ
+ Vì ( 2016a + 1 ) là số lẻ
( 2016a + 3b+1 ) là số lẻ
\(\Rightarrow\)3b là số chẵn
Mà 3 là số lẻ
\(\Rightarrow\)b là số chẵn
\(\Rightarrow\)( 2016a +b ) là số chẵn
Mà (2016a+ 2016a +b ) là số lẻ
\(\Rightarrow\)2016a là số lẻ.
Mà \(a\inℕ\)
\(\Rightarrow\)\(a=0\)(thỏa mãn)
Thay \(a=0\)vào (1), ta có:
(0+3b+1)(1+0+b) = 225
(3b+1)(b+1) = 225
Vì \(b\inℕ\)
\(\Rightarrow\)\(b+1\inℕ\)
\(3b+1\inℕ\)
Mà 3b+1 > b+1
\(\Rightarrow\)(3b+1)(b+1) = 225 = 225 . 1 = 25 . 9
+ Với 3b + 1 = 225
\(\Rightarrow\)\(b=\frac{224}{3}\)(Loại)
+ Với 3b + 1 = 25
\(\Rightarrow\)b = 8 (thỏa mãn)
Vậy \(\hept{\begin{cases}a=0\\b=8\end{cases}}\)
Hok tốt!
Vuong Dong Yet
BAN THAM KHAO LINK NAY CO CAU HOI TUONG TU NHE
https://h.vn/hoi-dap/tim-kiem?q=T%C3%ACm+c%C3%A1c+s%E1%BB%91+t%E1%BB%B1+nhi%C3%AAn+a:b+sao+cho+(+2014a+3b+1)(2014a++2014a+++b+)+=+225&id=171798
ta thấy: 225=52.32 đều là số lẻ
mà a,b là số tự nhiên => (2016a+3b+1) và (2016a+2016a+b) đều là số lẻ
- 2016a+3b+1 lẻ => b chẵn (vì 2016a+1 lẻ)
- 2016a+2016a+b lẻ => 2016a lẻ => a = 0 (vì 2016a+b chẵn)
thay a = 0, ta có:
(2016a+3b+1).(2016a+2016a+b)=(3b+1).(b+1)=225
xét b = 0 => (3b+1).(b+1)=1.1=225(loại)
xét b > 0 => 3b+1>b+1 (vì b là số tự nhiên)
(3b+1).(b+1)=1.225=25.9=15.15
vì 3b+1 > b+1 nên (3b+1).(b+1) không thể cùng bằng 15
-b+1=1 => b=0(loại)
-b+1=9=> b=8(t/m)
Đề hình như sai rồi bạn ạ! Tui nghĩ vậy nè:
\(\left(2016a+13b-1\right).\left(2016^a+2016a+b\right)=2015\)
Ta có: \(2015\)là số lẻ nên: \(\left(2016a+13b-1\right)\left(2016^a+2016a+b\right)\) lẻ.
\(\Rightarrow\hept{\begin{cases}2016a+13b-1\\2016^a+2016a+b\end{cases}}lẻ\)
Nếu: \(a\ne\Rightarrow2016a\)chẵn \(\Rightarrow13b-1\)lẻ \(\Rightarrow13b\)chẵn.
Mà: \(13\)lẻ nên \(\Rightarrow b\) chẵn.
Lúc đó: \(2016^a+2016a+b\left(l\right)\)
\(\Rightarrow a\ne0\left(ktm\right)\)
Nếu: \(a=0\Rightarrow2016a+13b-1=13b-1\)l lẻ.
\(2016^a+2016a+b=b+1\)lẻ
\(\Rightarrow\left(13b-1\right)\left(b+1\right)=2015\)
Mà: \(b\in N\Rightarrow\left(13b-1\right),\left(b+1\right)\inƯ\left(2015\right)\)
Vì:\(13b-1\) không chia hết cho \(3\)và \(13b-1>b+1\)
\(\Rightarrow\hept{\begin{cases}13b-1=155\\b+1=13\end{cases}}\Rightarrow\hept{\begin{cases}b=12\\b=12\end{cases}}\Rightarrow b=12\left(tm\right)\)
Vậy \(\hept{\begin{cases}a=0\\b=12\end{cases}}\)
Vì 225 lẻ nên (2016a+3b+1) và (2016^a+2016a+b) lẻ (1). Xét 2016^a+2016a+b có \(2016^a\), \(2016.a\)chẵn nên b lẻ. b lẻ nên 3b lẻ \(\vec{ }\)2016a+3b+1 chẵn, trái với (1) nên không tồn tại 2 số a và b
P/s: Mình không đảm bảo lời giải đúng đâu, có lời giải khác nhớ link mình với.
Vì 225 lẻ nên (2016a+3b+1)và (2016^a+2016a+b) lẻ. (1)
Xét \(a\ne0\) , có \(2016^a+2016a\) chẵn \(\Rightarrow\) b lẻ \(\Rightarrow\)\(3b+1\) chẵn \(\Rightarrow2016a+3b+1\)chẵn, trái với (1)
Vậy a=0 \(\Rightarrow\)
Bài làm trên của mình bị sai .
+ Nếu a = 2
VT = (2016.2 + 13b - 1)(20162 - 2016.2 + b) > 2015, mâu thuẫn với đề bài ( loại)
=> a < 2
+ Nếu a = 1, ta có:
(2016.1 + 13b - 1)(20161 - 2016.1 + b) = 2015
=> (13b + 2015).b = 2015 (1)
Dễ thấy 13b + 2015 > 0 do b thuộc N
Nên b = 0
Thay vào (1) -> vô lý
Do đó, a = 0
Thay vào đề bài ta được:
(2016.0 + 13b - 1)(20160 - 2016.0 + b) = 2015
=> (13b - 1).(b + 1) = 2015 = 5.13.31
Mà 13b - 1 chia 13 dư 12 => 13b - 1 = 5.31 = 155; b + 1 = 13
=> 13b = 156; b = 12
=> b = 12
Vậy a = 0; b = 12