Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x+1}+2\sqrt{2x+3}\ge2x+2\)
\(\Leftrightarrow\sqrt{x+1}-2+2\sqrt{2x+3}-6-2x+6\ge0\)
\(\Leftrightarrow\frac{x+1-4}{\sqrt{x+1}+2}+\frac{2\cdot\left(2x+3-9\right)}{\sqrt{2x+3}+3}-2\left(x-3\right)\ge0\)
\(\Leftrightarrow\frac{x-3}{\sqrt{x+1}+2}+\frac{4\cdot\left(x-3\right)}{\sqrt{2x+3}+3}-2\left(x-3\right)\ge0\)
\(\Leftrightarrow\left(x-3\right)\cdot\left(\frac{1}{\sqrt{x+1}+2}+\frac{4}{\sqrt{2x+3}+3}-2\right)\ge0\)
Xét \(\frac{1}{\sqrt{x+1}+2}+\frac{4}{\sqrt{2x+3}+3}-2=\frac{\sqrt{x+\frac{3}{2}}\cdot\sqrt{x+1}+\sqrt{\frac{x+1}{2}}+\frac{3}{2}\sqrt{x+\frac{3}{2}}+\frac{1}{2\sqrt{2}}}{\left(\sqrt{x+1}+2\right)\left(\sqrt{2x+3}+3\right)}\ge0\)
Do đó \(x-3\ge0\Leftrightarrow x\ge3\)
Vậy...
ĐKXĐ: \(x\ge\frac{2}{3}\)
\(\sqrt{x+3}-\sqrt{2x-1}=\sqrt{3x-2}\)
\(\Leftrightarrow\sqrt{x+3}=\sqrt{2x-1}+\sqrt{3x-2}\)
\(\Leftrightarrow x+3=2x-1+3x-2+2\sqrt{\left(2x-1\right)\left(3x-2\right)}\)
\(\Leftrightarrow3-2x=\sqrt{\left(2x-1\right)\left(3x-2\right)}\) (\(x\le\frac{3}{2}\))
\(\Leftrightarrow\left(3-2x\right)^2=\left(2x-1\right)\left(3x-2\right)\)
\(\Leftrightarrow4x^2-12x+9=6x^2-7x+2\)
\(\Leftrightarrow2x^2+5x-7=0\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-\frac{7}{2}< \frac{2}{3}\left(l\right)\end{matrix}\right.\)
\(\sqrt[3]{2x-1}+\sqrt[3]{x-1}=1\)
\(\Leftrightarrow\sqrt[3]{2x-1}-1+\sqrt[3]{x-1}=0\)
\(\Leftrightarrow\dfrac{2x-1-1}{\sqrt[3]{\left(2x-1\right)}^2+2\sqrt[3]{2x-1}+1}+\dfrac{x-1}{\sqrt[3]{\left(x-1\right)}^2}=0\)
\(\Leftrightarrow\dfrac{2\left(x-1\right)}{\sqrt[3]{\left(2x-1\right)}^2+2\sqrt[3]{2x-1}+1}+\dfrac{x-1}{\sqrt[3]{\left(x-1\right)}^2}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\dfrac{2}{\sqrt[3]{\left(2x-1\right)}^2+2\sqrt[3]{2x-1}+1}+\dfrac{1}{\sqrt[3]{\left(x-1\right)}^2}\right)=0\)
Dễ thấy: \(\dfrac{2}{\sqrt[3]{\left(2x-1\right)}^2+2\sqrt[3]{2x-1}+1}+\dfrac{1}{\sqrt[3]{\left(x-1\right)}^2}>0\)
\(\Rightarrow x-1=0\Rightarrow x=1\)
a/ ĐKXĐ: \(x^2+2x-6\ge0\)
\(\Leftrightarrow x^2+2x-6+\left(x-2\right)\sqrt{x^2+2x-6}=0\)
\(\Leftrightarrow\sqrt{x^2+2x-6}\left(\sqrt{x^2+2x-6}+x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+2x-6}=0\left(1\right)\\\sqrt{x^2+2x-6}=2-x\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x^2+2x-6=0\Rightarrow x=-1\pm\sqrt{7}\)
\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}2-x\ge0\\x^2+2x-6=\left(2-x\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le2\\6x=10\end{matrix}\right.\) \(\Rightarrow x=\frac{5}{3}\)
Câu b nhìn ko ra hướng, ko biết đề có nhầm đâu ko :(
c/ ĐKXĐ: \(\left[{}\begin{matrix}x\ge0\\x\le-1\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{\left(x^2+x\right)\left(x^2+x+2\right)}-\left(3-x\right)\sqrt{x^2+x}=0\)
\(\Leftrightarrow\sqrt{x^2+x}\left(\sqrt{x^2+x+2}-3+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x=0\left(1\right)\\\sqrt{x^2+x+2}=3-x\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}3-x\ge0\\x^2+x+2=\left(3-x\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le3\\7x=7\end{matrix}\right.\) \(\Rightarrow x=1\)
d/
Ta có \(\sqrt{x^2+3x+4}=\sqrt{\left(x+\frac{3}{4}\right)^2+\frac{7}{4}}>1\)
\(\Rightarrow\sqrt{x^2+3x+4}-1>0\)
Nhân 2 vế của pt với \(\sqrt{x^2+3x+4}-1\)
\(\left(\sqrt{x^2+3x+4}-1\right)\left(x^2+3x+3\right)=3x\left(x^2+3x+3\right)\)
\(\Leftrightarrow\left(x^2+3x+3\right)\left(\sqrt{x^2+3x+4}-1-3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+3x+3=0\left(vn\right)\\\sqrt{x^2+3x+4}=3x+1\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Rightarrow\left\{{}\begin{matrix}x\ge-\frac{1}{3}\\x^2+3x+4=\left(3x+1\right)^2\end{matrix}\right.\)
\(\Leftrightarrow8x^2+3x-3=0\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{-3+\sqrt{105}}{6}\\x=\frac{-3-\sqrt{105}}{6}\left(l\right)\end{matrix}\right.\)
nhầm đề ko bạn
Đề đúng mà bạn