Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a) \(x^2+y^2\)
\(\Leftrightarrow x^2+2xy+y^2-2xy\)
\(\Leftrightarrow\left(x+y\right)^2-2xy=\left(-3\right)^2-2.\left(-28\right)=65\)
b) \(x^3+y^3\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(\Leftrightarrow\left(x+y\right)\left(x^2+2xy+y^2-3xy\right)\)
\(\Leftrightarrow\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]=\left(-3\right)\left[\left(-3\right)^2-3.\left(-28\right)\right]=-279\)
c) \(x^4+y^4\)
\(\Leftrightarrow\left(x+y\right)^4-4x^3y-4xy^3-6x^2y^2=\left(-3\right)^4-4\left(-28\right).65-6\left(-28\right)^2=2657\)
a2 + 4b2 + 4c2 ≥ 4ab - 4ac + 8bc
⇔ a2 + 4b2 + 4c2 - 4ab + 4ac - 8bc ≥ 0
⇔ (a - 2b + 2c)2 ≥ 0 (đúng ∀abc)
Vậy a2 + 4b2 + 4c2 ≥ 4ab - 4ac + 8bc
Nhầm , sorry bạn nha , mk làm lại nè
a2 + 4b2 + 4c2 ≥ 4ab - 4ac + 8bc
⇔ a2 - 4ab + 4b2 + 4ac - 8bc + 4c2 ≥ 0
⇔ ( a - 2b)2 + 4c( a - 2b) + 4c2 ≥ 0
⇔ ( a - 2b + 2c)2 ≥ 0 ( luôn đúng ∀abc)
\(a^2+4b^2+4c^2\ge4ab-4ac+8bc\\ \Leftrightarrow a^2+4b^2+4c^2-4ab+4ac-8bc\ge0\\ \Leftrightarrow\left(a-2b+2c\right)^2\ge0\)
Luôn đúng với \(\forall x\in R\)
\(a^2-2a+b^2+4b+4c^2-4c+6=0\\ \Leftrightarrow\left(a^2-2a+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)=0\\ \Leftrightarrow\left(a+1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}\left(a+1\right)^2=0\\\left(b+2\right)^2=0\\\left(2c-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+1=0\\b+2=0\\2c-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=-2\\c=\dfrac{1}{2}\end{matrix}\right.\)
Vậy \(\left\{a;b;c\right\}=\left\{-1;-2;\dfrac{1}{2}\right\}\)
a nhân 2 vào 2 vế ta có
2a2+2b2+2c2=2ab +2bc+2ca
=> 2a2+2b2+2c2-2ab-2bc-2ca=0
=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ca+a2)=0
=>(a-b)2+(b-c)2+(c-a)2=0
=>(a-b)=(b-c)=(c-a)=0
=>a-b=0 =>a=b (1)
b-c=0=>b=c (2)
từ (1) và (2)
=>a=b=c (đpcm)