K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2017

\(C=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+...+\frac{2017}{4^{2017}}\)

\(4C=1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2017}{4^{2016}}\)

\(4C-C=\left(1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2017}{4^{2016}}\right)-\left(\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+...+\frac{2017}{4^{2017}}\right)\)

\(3C=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2016}}-\frac{2017}{4^{2017}}\)

\(12C=4+1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2015}}-\frac{2017}{4^{2016}}\)

\(12C-3C=\left(4+1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2015}}-\frac{2017}{4^{2016}}\right)-\left(1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2016}}-\frac{2017}{4^{2017}}\right)\)

\(9C=4-\frac{2017}{4^{2016}}-\frac{1}{4^{2016}}+\frac{2017}{4^{2017}}\)

\(9C=4-\frac{8068}{4^{2017}}-\frac{4}{4^{2017}}+\frac{2017}{4^{2017}}\)

\(9C=4-\frac{10081}{4^{2017}}\)

=> 9C < 4 

=> C < \(\frac{4}{9}\)\(\frac{1}{2}\)(đpcm)

27 tháng 1 2016

anh đã trở lại

13 tháng 9 2016

\(A=2^2+2^2+2^3+2^4+...+2^{20}\)

\(2A=2^3+2^3+2^4+2^5+...+2^{21}\)

\(2A-A=\left(2^3+2^3+2^4+2^5+...+2^{21}\right)-\left(2^2+2^2+2^3+2^4+...+2^{20}\right)\)

\(A=\left(2^3+2^{21}\right)-\left(2^2+2^2\right)\)

\(A=\left(2^{21}+2^3\right)-\left(2^3\right)\)

\(A=2^{21}\)