K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2020

           Bài làm :

 \(\text{a)}9\left(x+y-1\right)^2-4\left(2x+3y+1\right)^2\)

\(=\left(3x+3y-3\right)^2-\left(4x+6y+2\right)^2\)

\(=\left(3x+3y-3-4x-6y-2\right)\left(3x+3y-3+4x+6y+2\right)\)

\(=\left(-x-3y-5\right)\left(7x+9y-1\right)\)

 \(\text{b)}3x^4y^2+3x^3y^2+3xy^2+3y^2\)

\(=\left(3x^4y^2+3xy^2\right)+\left(3x^3y^2+3y^2\right)\)

\(=3xy^2\left(x^3+1\right)+3y^2\left(x^3+1\right)\)

\(=\left(3xy^2+3y^2\right)\left(x^3+1\right)\)

\(=3y^2\left(x+1\right)\left(x+1\right)\left(x^2-x+1\right)\)

\(=3y^2\left(x+1\right)^2\left(x^2-x+1\right)\)

 \(\text{c)}\left(x+y\right)^3-1-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1-3xy\right)\)

\(=\left(x+y-1\right)\left(x^2+x+y^2+y+1-xy\right)\)

\(d ) x^3+3x^2+3x+1-27z^3\)

\(=\left(x+1\right)^3-\left(3z\right)^3\)

\(=\left(x+1-3z\right)\left(x^2+2x+1+3xz+3z+9z^2\right)\)

1 tháng 10 2016

a) \(9\left(x+y-1\right)^2-4\left(2x+3y+1\right)^2\)

\(=\left(3x+3y-3\right)^2-\left(4x+6y+2\right)^2\)

\(=\left(3x+3y-3-4x-6y-2\right)\left(3x+3y-3+4x+6y+2\right)\)

\(=\left(-x-3y-5\right)\left(7x+9y-1\right)\)

b) \(3x^4y^2+3x^3y^2+3xy^2+3y^2\)

\(=\left(3x^4y^2+3xy^2\right)+\left(3x^3y^2+3y^2\right)\)

\(=3xy^2\left(x^3+1\right)+3y^2\left(x^3+1\right)\)

\(=\left(3xy^2+3y^2\right)\left(x^3+1\right)\)

\(=3y^2\left(x+1\right)\left(x+1\right)\left(x^2-x+1\right)\)

\(=3y^2\left(x+1\right)^2\left(x^2-x+1\right)\)

c) \(\left(x+y\right)^3-1-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1-3xy\right)\)

\(=\left(x+y-1\right)\left(x^2+x+y^2+y+1-xy\right)\)

14 tháng 11 2016

a) Nhóm x^2 và y^2  ; x và y 

b) Nhóm 3 hạng tử đầu lại vs nhau . Sau cùng xuất  hiện nhân tử chung là 3

c) Nhóm 2 hạng tử đầu với nhau. ba hạng tử còn lại với nhau . 

d) .....

14 tháng 11 2016

D,ghép đầu với cuối là hằng dẳng thức 2 cái giữa với nhau là nhân tử chung là 3x

a: \(N=\dfrac{3x^5-4x^4+6x^3}{-2x^2}=-\dfrac{3}{2}x^3+2x^2-3x\)

b: \(N=\dfrac{\left(6x^4y^5-3x^3y^4+\dfrac{1}{2}x^4y^3z\right)}{-\dfrac{1}{3}x^2y^3}=-18x^2y^2+9xy-\dfrac{3}{2}x^2z\)

c: \(\Leftrightarrow N\cdot\left(y-x\right)=\left(x-y\right)^3\)

\(\Leftrightarrow N=\dfrac{\left(x-y\right)^3}{y-x}=-\left(y-x\right)^2\)

d: \(\Leftrightarrow N\cdot\left(y^2-x^2\right)=\left(y^2-x^2\right)^2\)

hay \(N=y^2-x^2\)

25 tháng 7 2021

a, \(=\left(xy+1+x-y\right)\left(xy+1-x+y\right)\)

b, \(\left(x+y-x+y\right)[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2]\)

\(=2y[x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2]\)

\(=2y\left(3x^2+y^2\right)\)

c,\(=3\left(x+1\right)^2\left(x^2-x+1\right)y^2\)

25 tháng 7 2021

câu a, b áp dụng hằng đẳng thức rồi làm nha 

c) 3x4y+ 3x3y+ 3xy+ 3y2

= ( 3x4y+ 3x3y) + ( 3xy+ 3y)

= 3x3y( x + 1) + 3y( x + 1 )

= ( 3x3y+ 3y) ( x + 1 )

= 3y( x+ 1 ) ( x + 1 )

= 3y( x + 1 ) ( x2 - x + 1 ) ( x + 1 )

= 3y( x + 1 )( x2 - x + 1 )

17 tháng 8 2021

đề bài là rút gọn à

30 tháng 7 2020

a) \(\left(xy+1\right)^2-\left(x+y\right)^2\)

\(=\left(xy+1-x+y\right)\left(xy+1+x-y\right)\)

b) \(\left(x+y\right)^3-\left(x-y\right)^3\)

\(=\left[\left(x+y\right)-\left(x-y\right)\right]\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)

\(=\left(x+y-x+y\right)\left[\left(x^2+2xy+y^2\right)+x^2-y^2+\left(x^2-2xy+y^2\right)\right]\)

\(=2y\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)

\(=2y\left(3x^2+y^2\right)\)

c) \(3x^4y^2+3x^3y^2+3xy^2+3y^2\)

\(=3y^2\left(x^4+x^3+x+1\right)\)

d) \(4\left(x^2-y^2\right)-8\left(x-ay\right)-4\left(a^2-1\right)\)

\(=4\left[\left(x^2-y^2\right)-2\left(x-ay\right)-\left(a^2-1\right)\right]\)

\(=4\left[\left(x^2-y^2\right)-\left(2x-2ay\right)-\left(a^2-1\right)\right]\)

\(=4\left(x^2-y^2-2x+2ay-a^2+1\right)\)

P/s: Ko chắc!

NV
31 tháng 7 2020

c/

\(=3y^2\left(x^4+x^3+x+1\right)\)

\(=3y^2\left[x^3\left(x+1\right)+x+1\right]\)

\(=3y^2\left(x^3+1\right)\left(x+1\right)\)

\(=3y^2\left(x+1\right)^2\left(x^2-x+1\right)\)

d/

\(=\left(4x^2-8x+4\right)-\left(4y^2-8ay+4a^2\right)\)

\(=4\left(x-1\right)^2-4\left(y-a\right)^2\)

\(=4\left[\left(x-1\right)^2-\left(y-a\right)^2\right]\)

\(=4\left(x-1-y+a\right)\left(x-1+y-a\right)\)

 

6 tháng 9 2021

a) x2+y2-4x+4y+8=0

⇔ (x-2)2+(y+2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)

b)5x2-4xy+y2=0

⇔ x2+(2x-y)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

c)x2+2y2+z2-2xy-2y-4z+5=0

⇔ (x-y)2+(y-1)2+(z-2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)

b: Ta có: \(5x^2-4xy+y^2=0\)

\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)

\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

18 tháng 10 2021

b: \(B=\dfrac{3y+5}{y-1}-\dfrac{-y^2-4y}{y-1}+\dfrac{y^2+y+7}{y-1}\)

\(=\dfrac{3y+5+y^2+4y+y^2+y+7}{y-1}\)

\(=\dfrac{2y^2+8y+12}{y-1}\)