Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2.THPT\)
\(A=\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{98.99}+\frac{9}{99.100}\)
\(A=9\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(A=9\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=9\left(1-\frac{1}{100}\right)\)
\(A=9.\frac{99}{100}\)
\(A=\frac{891}{100}\)
\(B=\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{93.95}\)
\(B=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{93}-\frac{1}{95}\)
\(B=\frac{1}{5}-\frac{1}{95}\)
\(B=\frac{18}{95}\)
\(D=\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)
\(D=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}\)
\(D=\frac{1}{2}-\frac{1}{28}\)
\(D=\frac{13}{28}\)
a) \(\frac{2}{5}x-x=\frac{\left(-2018\right)^0}{5^2}\\ x\left(\frac{2}{5}-1\right)=\frac{1}{25}\\ x\left(\frac{2}{5}-\frac{5}{5}\right)=\frac{1}{25}\\ x\cdot\frac{-3}{5}=\frac{1}{25}\\ x=\frac{1}{25}:\frac{-3}{5}\\ x=\frac{1}{25}\cdot\frac{-5}{3}\\ x=\frac{-1}{15}\)Vậy \(x=\frac{-1}{15}\)
b) \(\left|-1\frac{1}{2}x+2x\right|-\frac{7}{4}=0,5\\ \left|x\left(-1\frac{1}{2}+2\right)\right|-\frac{7}{4}=\frac{1}{2}\\ \left|x\cdot\frac{1}{2}\right|=\frac{1}{2}+\frac{7}{4}\\ \left|x\cdot\frac{1}{2}\right|=\frac{2}{4}+\frac{7}{4}\\ \left|x\cdot\frac{1}{2}\right|=\frac{9}{4}\\ \Rightarrow\left[{}\begin{matrix}x\cdot\frac{1}{2}=\frac{9}{4}\\x\cdot\frac{1}{2}=\frac{-9}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{9}{4}:\frac{1}{2}\\x=\frac{-9}{4}:\frac{1}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{9}{4}\cdot2\\x=\frac{-9}{4}\cdot2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{9}{2}\\x=\frac{-9}{2}\end{matrix}\right.\)Vậy \(x\in\left\{\frac{9}{2};\frac{-9}{2}\right\}\)
c) \(x+\left(x+\frac{2}{7}\right)+\frac{-5}{11}=\frac{4}{11}\\ x+x+\frac{2}{7}=\frac{4}{11}-\frac{-5}{11}\\ 2x+\frac{2}{7}=\frac{4}{11}+\frac{5}{11}\\ 2x+\frac{2}{7}=\frac{9}{11}\\ 2x=\frac{9}{11}-\frac{2}{7}\\ 2x=\frac{63}{77}-\frac{22}{77}\\ 2x=\frac{41}{77}\\ x=\frac{41}{77}:2\\ x=\frac{41}{77\cdot2}\\ x=\frac{41}{154}\)Vậy \(x=\frac{41}{154}\)
d) \(\left|0,25x-20\%\right|+\frac{3}{8}=1\frac{3}{8}\\ \left|\frac{1}{4}x-\frac{1}{5}\right|=1\frac{3}{8}-\frac{3}{8}\\ \left|\frac{1}{4}x-\frac{1}{5}\right|=1\\ \Rightarrow\left[{}\begin{matrix}\frac{1}{4}x-\frac{1}{5}=1\\\frac{1}{4}x-\frac{1}{5}=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\frac{1}{4}x=1+\frac{1}{5}\\\frac{1}{4}x=\left(-1\right)+\frac{1}{5}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\frac{1}{4}x=\frac{5}{5}+\frac{1}{5}\\\frac{1}{4}x=\frac{-5}{5}+\frac{1}{5}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\frac{1}{4}x=\frac{6}{5}\\\frac{1}{4}x=\frac{-4}{5}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{6}{5}:\frac{1}{4}\\x=\frac{-4}{5}:\frac{1}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{6}{5}\cdot4\\x=\frac{-4}{5}\cdot4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{24}{5}\\x=\frac{-16}{5}\end{matrix}\right.\)Vậy \(x\in\left\{\frac{24}{5};\frac{-16}{5}\right\}\)
a,
3x + 3 - [7x+4] = 7 + [4x-1]
=> 3x + 3 - x - 4 = 7 + 4x - 1
=> 2x - 1 = 6 + 4x
=> 2x - 4x = 6 + 1
=> -2x = 7
=> x = -7/2
b,
3x+1 + 3x+3 =810
=> 3x+1[1 + 32] = 810
=> 3x+1 = 810 / 10
=> 3x+1 = 81
=> x = 4
c, \(1\frac{1}{2}:\left[\frac{1}{2}-\frac{1}{3}\right]-x=5\)
\(\Rightarrow\frac{3}{2}:\frac{1}{6}-x=5\Leftrightarrow9-x=5\)
\(\Leftrightarrow x=4\)
d,
\(2,4:\left[25\%+\frac{x}{40}\right]-\frac{12}{15}=3\frac{1}{5}\)
\(\Rightarrow\frac{12}{5}:\left[\frac{1}{4}+\frac{x}{40}\right]-\frac{12}{15}=\frac{16}{5}\)
\(\Leftrightarrow\frac{12}{5}:\left[\frac{10}{40}+\frac{x}{40}\right]=\frac{16}{5}+\frac{12}{15}\Leftrightarrow\frac{12}{5}:\left[\frac{10}{40}+\frac{x}{40}\right]=4\)
\(\Rightarrow\frac{10+x}{40}=\frac{12}{5}:4\Leftrightarrow\frac{10+x}{40}=\frac{3}{5}\)
\(\Rightarrow\frac{10+x}{40}=\frac{24}{40}\Leftrightarrow10+x=24\Rightarrow x=14\)
a) 3x + 3 - ( x + 4 ) = 7 + ( 4x - 1 )
3x + 3 - x - 4 = 7 + 4x - 1
2x - 1 = 6 + 4x
-2x = 7
\(\Rightarrow\)x = \(\frac{-7}{2}\)
b) 3x+1 + 3x+3 = 810
3x . 3 + 3x . 33 = 810
3x . ( 3 + 33 ) = 810
3x . 30 = 810
3x = 810 : 30
3x = 27
3x = 33
\(\Rightarrow\)x = 3
c) \(1\frac{1}{2}:\left(\frac{1}{2}-\frac{1}{3}\right)-x=5\)
\(\frac{3}{2}:\left(\frac{1}{2}-\frac{1}{3}\right)-x=5\)
\(\frac{3}{2}:\frac{1}{6}-x=5\)
\(9-x=5\)
\(\Rightarrow x=9-5\)
\(\Rightarrow x=4\)
d) 2,4 : ( 25% + \(\frac{x}{40}\)) - \(\frac{12}{15}\)= \(3\frac{1}{5}\)
\(\frac{12}{5}\) : ( \(\frac{1}{4}\)+ \(\frac{x}{40}\)) - \(\frac{12}{15}\)= \(\frac{16}{5}\)
\(\frac{12}{5}:\left(\frac{1}{4}+\frac{x}{40}\right)=\frac{16}{5}+\frac{12}{15}\)
\(\frac{12}{5}:\left(\frac{1}{4}+\frac{x}{40}\right)=4\)
\(\frac{1}{4}+\frac{x}{40}=\frac{12}{5}:4\)
\(\frac{1}{4}+\frac{x}{40}=\frac{3}{5}\)
\(\frac{x}{40}=\frac{3}{5}-\frac{1}{4}\)
\(\frac{x}{40}=\frac{7}{20}\)
\(\Rightarrow\frac{x}{40}=\frac{14}{40}\)
\(\Rightarrow x=14\)
a, (x2 - 5)(x2 - 24) < 0
=> x2 - 5 và x2 - 24 trái dấu
Mà x2 - 5 > x2 - 24 => \(\hept{\begin{cases}x^2-5>0\\x^2-24>0\end{cases}\Rightarrow5< x^2< 24}\)
Vì x \(\in\)Z nên x2 = 9;16
+) x2 = 9 => x = 3 hoặc x = -3
+) x2 = 16 => x = 4 hoặc x = -4
Vậy...
b,
\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Rightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Rightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Mà \(\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)\ne0\)
=> x + 1 = 0 => x = 0 - 1 => x = -1
\(\frac{x+1}{14}+\frac{x+2}{13}=\frac{x+3}{12}+\frac{x+4}{11}\)
\(\Rightarrow\left(\frac{x+1}{14}+1\right)+\left(\frac{x+2}{13}+1\right)=\left(\frac{x+3}{12}+1\right)+\left(\frac{x+4}{11}+1\right)\)
\(\Rightarrow\frac{x+15}{14}+\frac{x+15}{13}=\frac{x+15}{12}+\frac{x+15}{11}\)
\(\Rightarrow\frac{x+15}{14}+\frac{x+15}{13}-\frac{x+15}{12}-\frac{x+15}{11}=0\)
\(\Rightarrow\left(x+15\right)\left(\frac{1}{14}+\frac{1}{13}-\frac{1}{12}-\frac{1}{11}\right)=0\)
Mà \(\left(\frac{1}{14}+\frac{1}{13}-\frac{1}{12}-\frac{1}{11}\right)\ne0\)
=> x + 15 = 0 => x = 0 - 15 => x = -15
1/a) Ta có: \(A=x^4+\left(y-2\right)^2-8\ge-8\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)
Vậy GTNN của A = -8 khi x=0, y=2.
b) Ta có: \(B=|x-3|+|x-7|\)
\(=|x-3|+|7-x|\ge|x-3+7-x|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le7\end{cases}}\Rightarrow3\le x\le7\)
Vậy GTNN của B = 4 khi \(3\le x\le7\)
2/ a) Ta có: \(xy+3x-7y=21\Rightarrow xy+3x-7y-21=0\)
\(\Rightarrow x\left(y+3\right)-7\left(y+3\right)=0\Rightarrow\left(x-7\right)\left(y+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=7\\y=-3\end{cases}}\)
b) Ta có: \(\frac{x+3}{y+5}=\frac{3}{5}\)và \(x+y=16\)
Áp dụng tính chất bằng nhau của dãy tỉ số, ta có:
\(\frac{x+3}{y+5}=\frac{3}{5}\Rightarrow\frac{x+3}{3}=\frac{y+5}{5}=\frac{x+y+8}{8}=\frac{16+8}{8}=\frac{24}{8}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x+3}{3}=3\Rightarrow x+3=9\Rightarrow x=6\\\frac{y+5}{5}=3\Rightarrow y+5=15\Rightarrow y=10\end{cases}}\)
Bài 3: đề không rõ.
Bài 1:\(a,A=x^4+\left(y-2\right)^2-8\)
Có \(x^4\ge0;\left(y-2\right)^2\ge0\)
\(\Rightarrow A\ge0+0-8=-8\)
Dấu "=" xảy ra khi \(MinA=-8\Leftrightarrow x=0;y=2\)
\(b,B=\left|x-3\right|+\left|x-7\right|\)
\(\Rightarrow B=\left|x-3\right|+\left|7-x\right|\)
\(\Rightarrow B\ge\left|x-3+7-x\right|\)
\(\Rightarrow B\ge\left|-10\right|=10\)
Dấu "=" xảy ra khi \(MinB=10\Leftrightarrow3\le x\le7\Rightarrow x\in\left(3;4;5;6;7\right)\)
CÁC BN GIÚP MK VS NHA !!!!! MK DAG CẦN CỰC KỲ GẤP ĐÓ Ạ , AI GIẢI DC HẾT CHỖ NÀY SẼ DC K 3 CÁI ĐÓ Ạ !!!! CÁM ƠN MỌI NGƯỜI TRƯỚC Ạ ^^
\(a)\) Ta có :
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(A=1-\frac{1}{2^{100}}< 1\)
Vậy \(A< 1\)
Chúc bạn học tốt ~
a) Ta có: \(x^4\ge0\) \(\forall x\)
\(\left(y-2\right)^2\ge0\) \(\forall y\)
\(\Rightarrow A\ge-8\). Dấu = khi <=> \(\hept{\begin{cases}x^4=0\\\left(y-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)
Vậy min A = -8 <=> \(\hept{\begin{cases}x=0\\y=2\end{cases}}\)
B= /x-3/ + /x-7/
Ta có: /x-3/ \(\ge0\forall x\)
/x-7/ \(\ge0\) \(\forall x\)
=> B \(\ge0\). Dấu = khi <=> /x-3/ = 0 hoặc /x-7/=0
<=> x=3 hoặc x=7
Vậy B=0 <=> x=3 hoặc x=7