K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2017

a) Ta có: \(x^4\ge0\) \(\forall x\)

             \(\left(y-2\right)^2\ge0\) \(\forall y\)

          \(\Rightarrow A\ge-8\). Dấu = khi <=> \(\hept{\begin{cases}x^4=0\\\left(y-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)

Vậy min A = -8 <=> \(\hept{\begin{cases}x=0\\y=2\end{cases}}\)

29 tháng 5 2017

B= /x-3/ + /x-7/

Ta có: /x-3/ \(\ge0\forall x\)

         /x-7/ \(\ge0\)  \(\forall x\)

  => B \(\ge0\). Dấu = khi <=> /x-3/ = 0 hoặc /x-7/=0

                                       <=> x=3 hoặc x=7

Vậy B=0 <=> x=3 hoặc x=7

14 tháng 4 2019

\(2.THPT\)

\(A=\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{98.99}+\frac{9}{99.100}\)

\(A=9\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)

\(A=9\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(A=9\left(1-\frac{1}{100}\right)\)

\(A=9.\frac{99}{100}\)

\(A=\frac{891}{100}\)

\(B=\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{93.95}\)

\(B=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{93}-\frac{1}{95}\)

\(B=\frac{1}{5}-\frac{1}{95}\)

\(B=\frac{18}{95}\)

\(D=\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)

\(D=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}\)

\(D=\frac{1}{2}-\frac{1}{28}\)

\(D=\frac{13}{28}\)

18 tháng 11 2018

\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)

\(\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)

\(\Rightarrow x=165;y=20;z=25\)

16 tháng 4 2019

a) \(\frac{2}{5}x-x=\frac{\left(-2018\right)^0}{5^2}\\ x\left(\frac{2}{5}-1\right)=\frac{1}{25}\\ x\left(\frac{2}{5}-\frac{5}{5}\right)=\frac{1}{25}\\ x\cdot\frac{-3}{5}=\frac{1}{25}\\ x=\frac{1}{25}:\frac{-3}{5}\\ x=\frac{1}{25}\cdot\frac{-5}{3}\\ x=\frac{-1}{15}\)Vậy \(x=\frac{-1}{15}\)

b) \(\left|-1\frac{1}{2}x+2x\right|-\frac{7}{4}=0,5\\ \left|x\left(-1\frac{1}{2}+2\right)\right|-\frac{7}{4}=\frac{1}{2}\\ \left|x\cdot\frac{1}{2}\right|=\frac{1}{2}+\frac{7}{4}\\ \left|x\cdot\frac{1}{2}\right|=\frac{2}{4}+\frac{7}{4}\\ \left|x\cdot\frac{1}{2}\right|=\frac{9}{4}\\ \Rightarrow\left[{}\begin{matrix}x\cdot\frac{1}{2}=\frac{9}{4}\\x\cdot\frac{1}{2}=\frac{-9}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{9}{4}:\frac{1}{2}\\x=\frac{-9}{4}:\frac{1}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{9}{4}\cdot2\\x=\frac{-9}{4}\cdot2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{9}{2}\\x=\frac{-9}{2}\end{matrix}\right.\)Vậy \(x\in\left\{\frac{9}{2};\frac{-9}{2}\right\}\)

c) \(x+\left(x+\frac{2}{7}\right)+\frac{-5}{11}=\frac{4}{11}\\ x+x+\frac{2}{7}=\frac{4}{11}-\frac{-5}{11}\\ 2x+\frac{2}{7}=\frac{4}{11}+\frac{5}{11}\\ 2x+\frac{2}{7}=\frac{9}{11}\\ 2x=\frac{9}{11}-\frac{2}{7}\\ 2x=\frac{63}{77}-\frac{22}{77}\\ 2x=\frac{41}{77}\\ x=\frac{41}{77}:2\\ x=\frac{41}{77\cdot2}\\ x=\frac{41}{154}\)Vậy \(x=\frac{41}{154}\)

d) \(\left|0,25x-20\%\right|+\frac{3}{8}=1\frac{3}{8}\\ \left|\frac{1}{4}x-\frac{1}{5}\right|=1\frac{3}{8}-\frac{3}{8}\\ \left|\frac{1}{4}x-\frac{1}{5}\right|=1\\ \Rightarrow\left[{}\begin{matrix}\frac{1}{4}x-\frac{1}{5}=1\\\frac{1}{4}x-\frac{1}{5}=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\frac{1}{4}x=1+\frac{1}{5}\\\frac{1}{4}x=\left(-1\right)+\frac{1}{5}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\frac{1}{4}x=\frac{5}{5}+\frac{1}{5}\\\frac{1}{4}x=\frac{-5}{5}+\frac{1}{5}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\frac{1}{4}x=\frac{6}{5}\\\frac{1}{4}x=\frac{-4}{5}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{6}{5}:\frac{1}{4}\\x=\frac{-4}{5}:\frac{1}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{6}{5}\cdot4\\x=\frac{-4}{5}\cdot4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{24}{5}\\x=\frac{-16}{5}\end{matrix}\right.\)Vậy \(x\in\left\{\frac{24}{5};\frac{-16}{5}\right\}\)

30 tháng 5 2017

a, 

3x + 3 - [7x+4] = 7 + [4x-1]

=> 3x + 3 - x - 4 = 7 + 4x - 1

=> 2x - 1 = 6 + 4x

=> 2x - 4x = 6 + 1

=> -2x = 7

=> x = -7/2

b,

3x+1 + 3x+3 =810

=> 3x+1[1 + 32] = 810

=> 3x+1 = 810 / 10

=> 3x+1 = 81

=> x = 4

c, \(1\frac{1}{2}:\left[\frac{1}{2}-\frac{1}{3}\right]-x=5\)

\(\Rightarrow\frac{3}{2}:\frac{1}{6}-x=5\Leftrightarrow9-x=5\)

\(\Leftrightarrow x=4\)

d,

\(2,4:\left[25\%+\frac{x}{40}\right]-\frac{12}{15}=3\frac{1}{5}\)

\(\Rightarrow\frac{12}{5}:\left[\frac{1}{4}+\frac{x}{40}\right]-\frac{12}{15}=\frac{16}{5}\)

\(\Leftrightarrow\frac{12}{5}:\left[\frac{10}{40}+\frac{x}{40}\right]=\frac{16}{5}+\frac{12}{15}\Leftrightarrow\frac{12}{5}:\left[\frac{10}{40}+\frac{x}{40}\right]=4\)

\(\Rightarrow\frac{10+x}{40}=\frac{12}{5}:4\Leftrightarrow\frac{10+x}{40}=\frac{3}{5}\)

\(\Rightarrow\frac{10+x}{40}=\frac{24}{40}\Leftrightarrow10+x=24\Rightarrow x=14\)

30 tháng 5 2017

a) 3x + 3 - ( x + 4 ) = 7 + ( 4x - 1 )

3x + 3 - x - 4 = 7 + 4x - 1

2x - 1 = 6 + 4x

-2x  = 7

\(\Rightarrow\)x = \(\frac{-7}{2}\)

b) 3x+1 + 3x+3 = 810

3x . 3 + 3x . 33 = 810

3x . ( 3 + 33 ) = 810

3x . 30 = 810

3x = 810 : 30

3x = 27

3x = 33

\(\Rightarrow\)x = 3

c) \(1\frac{1}{2}:\left(\frac{1}{2}-\frac{1}{3}\right)-x=5\)

\(\frac{3}{2}:\left(\frac{1}{2}-\frac{1}{3}\right)-x=5\)

\(\frac{3}{2}:\frac{1}{6}-x=5\)

\(9-x=5\)

\(\Rightarrow x=9-5\)

\(\Rightarrow x=4\)

d) 2,4 : ( 25% + \(\frac{x}{40}\)) - \(\frac{12}{15}\)\(3\frac{1}{5}\)

\(\frac{12}{5}\) : ( \(\frac{1}{4}\)\(\frac{x}{40}\)) - \(\frac{12}{15}\)\(\frac{16}{5}\)

\(\frac{12}{5}:\left(\frac{1}{4}+\frac{x}{40}\right)=\frac{16}{5}+\frac{12}{15}\)

\(\frac{12}{5}:\left(\frac{1}{4}+\frac{x}{40}\right)=4\)

\(\frac{1}{4}+\frac{x}{40}=\frac{12}{5}:4\)

\(\frac{1}{4}+\frac{x}{40}=\frac{3}{5}\)

\(\frac{x}{40}=\frac{3}{5}-\frac{1}{4}\)

\(\frac{x}{40}=\frac{7}{20}\)

\(\Rightarrow\frac{x}{40}=\frac{14}{40}\)

\(\Rightarrow x=14\)

13 tháng 2 2018

Làm sao 2 ẩn mà chỉ có 1 phương trình mà giải đc nhỉ ??

13 tháng 2 2018

Thầy cho bọn tớ thế !

29 tháng 5 2017

a, (x2 - 5)(x2 - 24) < 0

=> x2 - 5 và x2 - 24 trái dấu

Mà x2 - 5 > x2 - 24 => \(\hept{\begin{cases}x^2-5>0\\x^2-24>0\end{cases}\Rightarrow5< x^2< 24}\)

Vì x \(\in\)Z nên x2 = 9;16

+) x2 = 9 => x = 3 hoặc x = -3

+) x2 = 16 => x = 4 hoặc x = -4

Vậy...

b,

\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)

\(\Rightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)

\(\Rightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)

Mà \(\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)\ne0\)

=> x + 1 = 0 => x = 0 - 1 => x = -1

\(\frac{x+1}{14}+\frac{x+2}{13}=\frac{x+3}{12}+\frac{x+4}{11}\)

\(\Rightarrow\left(\frac{x+1}{14}+1\right)+\left(\frac{x+2}{13}+1\right)=\left(\frac{x+3}{12}+1\right)+\left(\frac{x+4}{11}+1\right)\)

\(\Rightarrow\frac{x+15}{14}+\frac{x+15}{13}=\frac{x+15}{12}+\frac{x+15}{11}\)

\(\Rightarrow\frac{x+15}{14}+\frac{x+15}{13}-\frac{x+15}{12}-\frac{x+15}{11}=0\)

\(\Rightarrow\left(x+15\right)\left(\frac{1}{14}+\frac{1}{13}-\frac{1}{12}-\frac{1}{11}\right)=0\)

Mà \(\left(\frac{1}{14}+\frac{1}{13}-\frac{1}{12}-\frac{1}{11}\right)\ne0\)

=> x + 15 = 0 => x = 0 - 15 => x = -15

30 tháng 6 2018

1/a) Ta có: \(A=x^4+\left(y-2\right)^2-8\ge-8\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)

Vậy GTNN của A = -8 khi x=0, y=2.

b) Ta có: \(B=|x-3|+|x-7|\)

\(=|x-3|+|7-x|\ge|x-3+7-x|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le7\end{cases}}\Rightarrow3\le x\le7\)

Vậy GTNN của B = 4 khi \(3\le x\le7\)

2/ a) Ta có: \(xy+3x-7y=21\Rightarrow xy+3x-7y-21=0\)

\(\Rightarrow x\left(y+3\right)-7\left(y+3\right)=0\Rightarrow\left(x-7\right)\left(y+3\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=7\\y=-3\end{cases}}\)

b) Ta có: \(\frac{x+3}{y+5}=\frac{3}{5}\)và \(x+y=16\)

Áp dụng tính chất bằng nhau của dãy tỉ số, ta có:

\(\frac{x+3}{y+5}=\frac{3}{5}\Rightarrow\frac{x+3}{3}=\frac{y+5}{5}=\frac{x+y+8}{8}=\frac{16+8}{8}=\frac{24}{8}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x+3}{3}=3\Rightarrow x+3=9\Rightarrow x=6\\\frac{y+5}{5}=3\Rightarrow y+5=15\Rightarrow y=10\end{cases}}\)

Bài 3: đề không rõ.

30 tháng 6 2018

Bài 1:\(a,A=x^4+\left(y-2\right)^2-8\)

Có \(x^4\ge0;\left(y-2\right)^2\ge0\)

\(\Rightarrow A\ge0+0-8=-8\)

Dấu "=" xảy ra khi \(MinA=-8\Leftrightarrow x=0;y=2\)

\(b,B=\left|x-3\right|+\left|x-7\right|\)

\(\Rightarrow B=\left|x-3\right|+\left|7-x\right|\)

\(\Rightarrow B\ge\left|x-3+7-x\right|\)

\(\Rightarrow B\ge\left|-10\right|=10\)

Dấu "=" xảy ra khi \(MinB=10\Leftrightarrow3\le x\le7\Rightarrow x\in\left(3;4;5;6;7\right)\)

                        GIÚP MÌNH VỚI !!!  AI GIÚP MÌNH ĐẦU TIÊN CẢ CHỖ NÀY MÌNH SẼ TICK KIỆT LIỆT CHO NGƯỜI ĐÓ NHABài 1: Chứng minh rằng:a)A=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}< 1\)b) B=\(\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{99.100}< 2\)c)C=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{3}{4}\)d) D=\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}< 6\) Bài 2: cho biểu...
Đọc tiếp

                        GIÚP MÌNH VỚI !!!  AI GIÚP MÌNH ĐẦU TIÊN CẢ CHỖ NÀY MÌNH SẼ TICK KIỆT LIỆT CHO NGƯỜI ĐÓ NHA

Bài 1: Chứng minh rằng:

a)A=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}< 1\)

b) B=\(\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{99.100}< 2\)

c)C=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{3}{4}\)

d) D=\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}< 6\)

 

Bài 2: cho biểu thức: A=\(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+\frac{1}{24}+...+\frac{1}{40}\)

Chứng tỏ : \(\frac{1}{2}< A< 1\)

Bài 3: Tìm x biết:

a) \(\frac{1}{6}.x+\frac{1}{12}.x+\frac{1}{20}.x+...+\frac{1}{2450}.x=1\)

b)\(\left|2\frac{2}{9}-x\right|=\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)

 

Bài 4: Tìm x nguyên để các biểu thức sau đạt giá trị nhỏ nhất:

a) A=\(\left(x-1^2\right)+2018\) 

b) B= |x+4| +1930

c)C=\(\frac{5}{x-2}\)

d)D=\(\frac{x+5}{x-4}\)

 

Bài 5 Tìm x nguyên để các biểu thức sau đạt giá trị lớn nhất:

a) P=2017-(x+1)2018

b) Q=1010-|3-x|

c) C=\(\frac{5}{\left(x-3\right)^2+1}\)

d)D=\(\frac{4}{\left|x-2\right|+2}\)

 

Bài 6: Cho biết 3a +2b chia hết cho 17 . Chứng minh rằng: 10a+b chia hết cho 17 (a,b\(\in\)\(ℤ\))

Bài 7: Chứng minh rằng 3x+5y\(⋮\)\(\Leftrightarrow\)x+4y\(⋮\)7 (x,y\(\in\)\(ℤ\))

GIÚP MÌNH NHA SAU ĐÓ AI GIÚP DC CHO MÌNH HẾT CHỖ NÀY SẼ CÓ THƯỞNG ĐÓ !!!!

 

 

 

0
 GIÚP MÌNH VỚI !!!  AI GIÚP MÌNH ĐẦU TIÊN CẢ CHỖ NÀY MÌNH SẼ TICK KIỆT LIỆT CHO NGƯỜI ĐÓ NHABài 1: Chứng minh rằng:a)A=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}< 1\)b) B=\(\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{99.100}< 2\)c)C=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{3}{4}\)d) D=\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}< 6\) Bài 2: cho biểu thức:...
Đọc tiếp

 GIÚP MÌNH VỚI !!!  AI GIÚP MÌNH ĐẦU TIÊN CẢ CHỖ NÀY MÌNH SẼ TICK KIỆT LIỆT CHO NGƯỜI ĐÓ NHA

Bài 1: Chứng minh rằng:

a)A=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}< 1\)

b) B=\(\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{99.100}< 2\)

c)C=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{3}{4}\)

d) D=\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}< 6\)

 

Bài 2: cho biểu thức: A=\(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+\frac{1}{24}+...+\frac{1}{40}\)

Chứng tỏ : \(\frac{1}{2}< A< 1\)

Bài 3: Tìm x biết:

a) \(\frac{1}{6}.x+\frac{1}{12}.x+\frac{1}{20}.x+...+\frac{1}{2450}.x=1\)

b)\(\left|2\frac{2}{9}-x\right|=\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)

 

Bài 4: Tìm x nguyên để các biểu thức sau đạt giá trị nhỏ nhất:

a) A=\(\left(x-1^2\right)+2018\) 

b) B= |x+4| +1930

c)C=\(\frac{5}{x-2}\)

d)D=\(\frac{x+5}{x-4}\)

 

Bài 5 Tìm x nguyên để các biểu thức sau đạt giá trị lớn nhất:

a) P=2017-(x+1)2018

b) Q=1010-|3-x|

c) C=\(\frac{5}{\left(x-3\right)^2+1}\)

d)D=\(\frac{4}{\left|x-2\right|+2}\)

 

Bài 6: Cho biết 3a +2b chia hết cho 17 . Chứng minh rằng: 10a+b chia hết cho 17 (a,b\(\in\)\(ℤ\))

Bài 7: Chứng minh rằng 3x+5y\(⋮\)\(\Leftrightarrow\)x+4y\(⋮\)7 (x,y\(\in\)\(ℤ\))

GIÚP MÌNH NHA SAU ĐÓ AI GIÚP DC CHO MÌNH HẾT CHỖ NÀY SẼ CÓ THƯỞNG ĐÓ !!!!

7
22 tháng 4 2018

CÁC BN GIÚP MK VS NHA !!!!! MK DAG CẦN CỰC KỲ GẤP ĐÓ Ạ , AI GIẢI DC HẾT CHỖ NÀY SẼ DC K 3 CÁI ĐÓ Ạ !!!! CÁM ƠN MỌI NGƯỜI TRƯỚC Ạ ^^

22 tháng 4 2018

\(a)\) Ta có : 

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

\(A=1-\frac{1}{2^{100}}< 1\)

Vậy \(A< 1\)

Chúc bạn học tốt ~