Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
V1.a)Ta có : \(A=x^2+5x+7=\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\)
Ta có : \(\left(x+\frac{5}{2}\right)^2\ge0=>\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "="xảy ra khi \(x+\frac{5}{2}=0=>x=-\frac{5}{2}\)
Vậy\(A_{min}=\frac{3}{4}\) khi \(x=-\frac{5}{2}\)
b)Ta có : \(B=6x-x^2-5=-\left(x^2-6x+5\right)=-[\left(x-3\right)^2-4]\)
Ta có : \(\left(x-3\right)^2\ge0=>B\le4\)
Dấu "="xảy ra khi (x-3)=0=>x=3
Vậy \(B_{mãx}=4\)khi x=3
Bài 1: Tìm giá trị:
a) Nhỏ nhất của biểu thức: A = x2 + 5x + 7
Giải phương trình trên máy tính
Lặp 3 lần dấu" = "
kq : GTNN của A = \(-\frac{5}{2}\)
b) Lớn nhất của biểu thức: B = 6x - x2 - 5
B = -x2 + 6x - 5
Giải phương trình trên máy tính
Lặp 3 dấu " = "
kq : GTLN của B = 3
\(A=x^2+5x+7\)
\(A=\left(x^2+5x+\frac{25}{4}\right)+\frac{3}{4}\)
\(A=\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x+\frac{5}{2}\right)^2=0\)
\(\Leftrightarrow\)\(x+\frac{5}{2}=0\)
\(\Leftrightarrow\)\(x=\frac{-5}{2}\)
Vậy GTNN của \(A\) là \(\frac{3}{4}\) khi \(x=\frac{-5}{2}\)
Chúc bạn học tốt ~
\(B=6x-x^2-5\)
\(-B=x^2-6x+5\)
\(-B=\left(x^2-6x+9\right)-4\)
\(-B=\left(x-3\right)^2-4\ge-4\)
\(B=-\left(x-3\right)^2+4\le4\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(-\left(x-3\right)^2=0\)
\(\Leftrightarrow\)\(x-3=0\)
\(\Leftrightarrow\)\(x=3\)
Vậy GTLN của \(B\) là \(4\) khi \(x=3\)
Chúc bạn học tốt ~
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
a) A= 2x2-8x+10 = 2(x-2)2+2\(\ge\)2\(\Leftrightarrow\)x=2
Vậy MinA=2 \(\Leftrightarrow\)x=2
b) B= -(x-1)2-(2y+1)2+7 \(\le\)7
Dấu = xảy ra khi x=1 và y=\(\frac{-1}{2}\)
Vậy MaxB=7 ....
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1≥0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967≥0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2≤0+21=21
Dấu = khi x+4=0 <=>x=-4
Bài 1:
c)C=x2+5x+8
=x2+5x+\(\left(\dfrac{5}{2}\right)^2\)+\(\dfrac{7}{4}\)
=\(\left(x+\dfrac{5}{2}\right)^2\)+\(\dfrac{7}{4}\)\(\ge\dfrac{7}{4}\)
Vậy \(C_{min}=\dfrac{7}{4}\Leftrightarrow x=-\dfrac{5}{2}\)
A = x2 + 4x + 7
= ( x2 + 4x + 4 ) + 3
= ( x + 2 )2 + 3
( x + 2 )2 ≥ 0 ∀ x => ( x + 2 )2 + 3 ≥ 3
Đẳng thức xảy ra <=> x + 2 = 0 => x = -2
=> MinA = 3 <=> x = -2
B = 2x2 - 6x
= 2( x2 - 3x + 9/4 ) - 9/2
= 2( x - 3/2 )2 - 9/2
2( x - 3/2 )2 ≥ 0 ∀ x => 2( x - 3/2 )2 -9/2 ≥ -9/2
Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2
=> MinB = -9/2 <=> x = 3/2
C = -2x2 + 8x - 15
= -2( x2 - 4x + 4 ) - 7
= -2( x - 2 )2 - 7
-2( x - 2 )2 ≤ 0 ∀ x => -2( x - 2 )2 - 7 ≤ -7
Đẳng thức xảy ra <=> x - 2 = 0 => x = 2
=> MaxC = -7 <=> x = 2
a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)
Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)
\(\Rightarrow\left(2x-3\right)^2+91\ge91\)
hay A \(\ge91\)
Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)
<=> 2x-3=0
<=> 2x=3
<=> \(x=\frac{3}{2}\)
Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)
b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)
Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x+\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)
\(C=2x^2+2xy+y^2-2x+2y+2\)
\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)
\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)
Ta có:
\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)
\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)
hay C\(\ge\)1
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)
Vậy Min C=1 đạt được khi y=1 và x=0
\(A=5-8x+x^2=-8x+x^2+6-11\)
\(=\left(x-4\right)^2-11\)
Vì \(\left(x-4\right)^2\ge0\forall x\)\(\Rightarrow\left(x-4\right)^2-11\ge-11\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x-4=0\Leftrightarrow x=4\)
Vậy Amin = - 11 <=> x = 4
\(B=\left(2-x\right)\left(x+4\right)=-x^2-2x+8\)
\(=-\left(x^2+2x+1\right)+9=-\left(x+1\right)^2+9\)
Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow-\left(x+1\right)^2+9\le9\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy Bmax = 9 <=> x = - 1
a) \(A=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\)
\(\left(x-3\right)^2\ge0\forall x\Rightarrow\left(x-3\right)^2+2\ge2\)
Đẳng thức xảy ra <=> x - 3 = 0 => x = 3
Vậy AMin = 2 , đạt được khi x = 3
b) \(B=5x-x^2=-x^2+5x=-x^2+5x-\frac{25}{4}+\frac{25}{4}=-\left(x^2-5x+\frac{25}{4}\right)+\frac{25}{4}=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)
\(-\left(x-\frac{5}{2}\right)^2\le0\forall x\Rightarrow-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)
Đẳng thức xảy ra <=> x - 5/2 = 0 => x = 5/2
Vậy BMax = 25/4 , đạt được khi x = 5/2
c) \(2x-2x^2-5=-2x^2+2x-5=-2\left(x^2-x+\frac{1}{4}\right)-\frac{9}{2}=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\)
\(-2\left(x-\frac{1}{2}\right)^2\le0\forall x\Rightarrow-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\le-\frac{9}{2}\)
Đẳng thức xảy ra <=> x - 1/2 = 0 => x = 1/2
Vậy CMax = -9/2 , đạt được khi x = 1/2
a,A=x^2+2.x.5/2+25/4+3/4
=(x+5/2)2+3/4
nx:(x+5/2)^2 luôn> hoặc = 0 nên (x+5/2)^2+3/4 >hoặc =3/4
vậy GTNN của A là 3/4
b,B=6x-x2-5
= - (x2-6x+5)
= - (x2-2.x.3+9-4)
=-[(x-3)2-4]
=-(x-3)^2+4
nx; -(x-3)^2 luôn nhỏ hơn hoặc bằng 0 nên -(x-3)^2 +4 luôn < hoặc= 4
Vậy GTLN của B là 4