Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A.
( 2x + 1 )( y - 5 ) = 12
Ta có bảng sau :
2x+1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
y-5 | 12 | -12 | 6 | -6 | 4 | -4 | 3 | -3 | 2 | -2 | 1 | -1 |
x | 0 | -1 | 0,5 | -1,5 | 1 | -2 | 1,5 | -2,5 | 2,5 | -3,5 | 5,5 | -6,5 |
y | 17 | -7 | 11 | -1 | 9 | 1 | 8 | 2 | 7 | 3 | 6 | 4 |
Vì x , y thuộc N => ( x ; y ) = { ( 0 ; 17 ) , ( 1 ; 9 ) }
B.
4n - 5 chia hết cho 2n - 1
=> 2( 2n - 1 ) - 3 chia hết cho 2n - 1
=> 3 chia hết cho 2n - 1
=> 2n - 1 thuộc Ư(3) = { ±1 ; ±3 }
2n-1 | 1 | -1 | 3 | -3 |
n | 1 | 0 | 2 | -1 |
Vì n là số tự nhiên => n = { 1 ; 0 ; 2 }
a) Vì n+3 chia hết n-1
=> (n+3) - (n-1) chia hết n-1
=> n + 3 - n + 1 chia hết n-1
=> 4 chia hết n-1
=> n-1 thuộc {-1;1;2;4}
=> n thuộc {0;2;3;5}
b) Vì 4n+3 chia hết cho 2n-1
=> (4n+3) - 2(2n-1) chia hết cho 2n-1
=> 4n + 3 - 4n +2 chia hết cho 2n-1
=> 5 chia hết 2n-1
=> 2n-1 thuộc {-1;1;5}
=> 2n thuộc {0;2;6}
=> n thuộc {0;1;3}
Nhấn đúng cho mk nha!!!!!!!!!!
4n+3 chia hết cho 2n-1
=> 4n-2+5 chia hết cho 2n-1
Vì 4n-2 chia hết cho 2n-1
=> 5 chia hết cho 2n-1
=> 2n-1 thuộc Ư(5)
2n-1 | n |
1 | 1 |
-1 | 0 |
5 | 3 |
-5 | -2 |
KL: n thuộc............................
1, Để A chia hết cho 5 thì chữ số tận cùng của A là 0 và 5
\(\Rightarrow\)c phải là 5
Chữ số tận cùng là 5 chia hết cho 5 rồi thì còn lại 2 số đầu có thể xếp lên a hoặc là b
\(\Rightarrow\)A có thể là 1955 hoặc là 9155
Toán lớp 6Phân tích thành thừa số nguyên tố
Đinh Tuấn Việt 20/05/2015 lúc 22:51
Theo đề bài ta có:
a = p1m . p2n $\Rightarrow$⇒ a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$\Rightarrow$⇒ m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 4 Yêu Chi Pu đã chọn câu trả lời này.
nguyên 24/05/2015 lúc 16:50
Theo đề bài ta có:
a = p1m . p2n $$
a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$$
m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 0
Captain America
xét n=0 => không thỏa mãn;n=1 => thỏa mãn;
xét n\(\ge2\)
với n là số chẵn thì
19n+1n=(19+1)(19n-1 - 19n-2 +... - 1)+ 2.1n = 20A + 2
18n +2n = (18+2)(18n-1- 18n-2.2 + 18n-3.22 - ... - 2n-1) + 2.2n = 20B +2.2n
=> để 20A +2 +20B+ 2.22n chia hết cho 5 thì 2.2n +2 chia hết cho 5 hay 2n +1 chia hết cho 5
n chẵn nên sẽ có dạng n= 2k (k\(\in N;k\ge1\)) => 2n +1 = 22k +1 = 4k +1
4k chỉ có chữ số tận cùng là 4 hoặc 6
với k chẵn thì 4k tận cùng là 6 nên 4k +1 không chia hết cho 5 (loại)
với k lẻ; k có dạng k = 2x+1 (\(x\in N;x\ge0\)) thì 4k tận cùng là 4 nên 4k +1 tận cùng là 5 ( thỏa mãn chia hết cho 5) => n = 2k =2(2x+ 1) = 4x + 2 (x\(\in N;x\ge0\)) thỏa mãn
xét n là số lẻ; n =2k +1 (k\(\in Z;k\ge1\)) thì 19n+1n + 18n + 2n = (19+1)(19n-1- 19n-2 +...+ 1) + (18+2)(18n-1 - 18n-2.2 +...+ 2n-1)
=20U +20V chia hết cho 5
vậy với mọi n là số lẻ hoặc n = 4x +2(x \(\in N;x\ge1\)) đều thỏa mãn
+) 18 chia 5 dư 3
=> \(18^n;3^n\) có cùng số dư khi chia cho 5.
+) 19 chia 5 dư 4
=> \(19^n;4^n\)có cùng số dư khi chia cho 5
=> \(1^n+2^n+18^n+19^n\)chia hết cho 5 khi và chỉ khi \(1^n+2^n+3^n+4^n\) chia hết cho 5
+) Chúng ta đi tìm n bằng cách quy nạp:
Với n = 0 ta có: \(1^0+2^0+3^0+4^0=4⋮̸5\)
Với n = 1 ta có: \(1^1+2^1+3^1+4^1=10⋮5\)
Với n = 2 ta có: \(1^2+2^2+3^2+4^2=30⋮5\)
Với n = 3 ta có: \(1^3+2^3+3^3+4^3=100⋮5\)
Với n = 4 ta có: \(1^4+2^4+3^4+4^4=354⋮̸5\)
Với n = 5 ta có: \(1^5+2^5+3^3+4^3=1300⋮5\)
...
Từ điều trên chúng ta có nhận xét rằng, Các số n không chia hết cho 4 thì \(1^n+2^n+3^n+4^n\)chia hết cho 5.
+) Chứng minh: Xét n với 4 dạng : n = 4k; n= 4k+1 ; n= 4k+2; n= 4k +3 ( với k là số tự nhiên)
(i) Với n = 4k ta có:
Vì \(1^k\)chia 5 dư 1; \(16^k\)chia 5 dư 1; \(81^k\)chia 5 dư 1; \(256^k\)chia 5 dư 1
\(1^{4k}+2^{4k}+3^{4k}+4^{4k}=1^k+16^k+81^k+256^k\)
=> n =4k thì \(1^n+2^n+3^n+4^n\)không chia hết cho 5.
(ii) Với n = 4k + 1ta có:
Vì \(1^k\)chia 5 dư 1; \(16^k.2\)chia 5 dư 2; \(81^k.3\)chia 5 dư 3; \(256^k.4\) chia 5 dư 4.
=> \(1^{4k+1}+2^{4k+1}+3^{4k+1}+4^{4k+1}=1^k+16^k.2+81^k.3+256^k.4\) chia 5 dư 10 => chia hết 5
=> n =4k +1 thì \(1^n+2^n+3^n+4^n\) chia hết cho 5.
(iii) Với n = 4k + 2 ta có:
Vì \(1^k\)chia 5 dư 1; \(16^k.4\)chia 5 dư 4; \(81^k.9\)chia 5 dư 4; \(256^k.16\) chia 5 dư 1.
=> \(1^{4k+2}+2^{4k+2}+3^{4k+2}+4^{4k+2}=1^k+16^k.4+81^k.9+256^k.16\) chia 5 dư 10 => chia hết cho 5
=> n =4k +2 thì \(1^n+2^n+3^n+4^n\) chia hết cho 5.
(iv) Với n = 4k + 3ta có:
Vì \(1^k\)chia 5 dư 1; \(16^k.8\)chia 5 dư 3; \(81^k.27\)chia 5 dư 2 ; \(256^k.64\) chia 5 dư 4.
=> \(1^{4k+1}+2^{4k+3}+3^{4k+3}+4^{4k+3}=1^k+16^k.8+81^k.27+256^k.64\) chia cho 5 dư 10 => chia hết cho 5
=> n =4k +3 thì \(1^n+2^n+3^n+4^n\) chia hết cho 5.
=> n không chia hết cho 4 thì \(1^n+2^n+3^n+4^n\) chia hết cho 5.
Vậy suy ra \(1^n+2^n+18^n+19^n\) chia hết cho 5 khi n không chia hết cho 4.
Bài 1: 5a+7b chia hết cho 13
=> 35a+49b chia hết cho 13
=> 5(7a+2b)+39b chia hết cho 13
Do 39b chia hết cho 13
=> 5(7a+2b) chia hết cho 13
Mà 5 vs 13 là 2 số nguyên tố cùng nhau
=> 7a+2b chia hết cho 13. (đpcm)
Bài 2:
Xét n=3 thì 1!+2!+3!=9-là SCP (chọn)
Xét n=4 thì 1!+2!+3!+4!=33 ko là SCP (loại)
Nếu n>=5 thì n! sẽ có tận cùng là 0
=> 1!+2!+3!+4!+....+n! vs n>=5 thì sẽ có tận cùng là 3 do 1!+2!+3!+4! tận cùng =3
Mà 1 số chính phương ko thể chia 5 dư 3 (1 SỐ CHÍNH PHƯƠNG CHIA 5 DƯ 0;1;4- tính chất)
=> Với mọi n>=5 đều loại
vậy n=3.
Bài 3:
Do 26^3 có 2 chữ số tận cùng là 76
26^5 có 2 chữ số tận cùng là 76
26^7 có 2 chữ sốtận cùng là 76
Vậy ta suy ra là 26 mũ lẻ sẽ tận cùng =76
Vậy 26^2019 có 2 chữ số tận cùng là 76.
a) \(4n-5⋮2n-1\)
\(\Rightarrow\left(4n-2\right)-3⋮2n-1\)
\(\Rightarrow2\left(2n-1\right)-3⋮2n-1\)
\(\Rightarrow-3⋮2n-1\)
\(\Rightarrow2n-1\in\left\{1;-1;3;-3\right\}\)
+) \(2n-1=1\Rightarrow2n=2\Rightarrow n=1\) ( chọn )
+) \(2x-1=-1\Rightarrow2n=0\Rightarrow n=0\) ( chọn )
+) \(2n-1=3\Rightarrow2n=4\Rightarrow n=2\) ( chọn )
+) \(2n-1=-3\Rightarrow n=-1\) ( loại )
Vậy \(n\in\left\{1;0;2\right\}\)
Cho mk hỏi nha cái dấu \(⋮\) là j thế