K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2018

Câu a bạn giản ước đì rồi táchr a nhé

b) Ta có (x+y)2>=0

=>x2+y2+2xy>=0

=>x2+y2>= -2xy

=> x2+y2+x2+y>=x2+y2-2xy=(x-y)2=1

=>2x2+2y2>=1

=>2x2+2y2+2>=3

=> \(\frac{2x^2+2y^2+2}{4}>=\frac{3}{4}\)

=>\(\frac{x^2+y^2+1}{2}>=\frac{3}{4}\)

Mà (x-y)2=1 => x2+y2-2xy=1

=>x2+y2-1=2xy

=.\(xy=\frac{x^2+y^2-1}{2}\) 

=> \(xy+1=\frac{x^2+y^2-1}{2}+1=\frac{x^2+y^2+1}{2}\)

=> xy+1>=3/4

25 tháng 6 2017

bài 3 thôi nhé,mấy bài kia đơn giản mà

Áp dụng bất đẳng thức Schwarts ta có:

\(\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+zx}\ge\frac{\left(1+1+1\right)^2}{1+1+1+xy+yz+zx}\ge\frac{9}{3+3}=\frac{3}{2}\)

=>đpcm

Dấu = xảy ra khi a=b=c=1

25 tháng 6 2017

bài 1 dạng này mình ko biết

còn bài 2 thì mình giải rồi nhưng ko chắc

bạn giúp mình cả 2 bài này luôn nha

11 tháng 4 2017

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\)

Ta có:

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge\frac{3a}{4}\)

\(\Leftrightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}\ge\frac{6a-b-c-2}{8}\)

Tương tự ta có: \(\hept{\begin{cases}\frac{b^3}{\left(1+c\right)\left(1+a\right)}\ge\frac{6b-c-a-2}{8}\\\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{6c-a-b-2}{8}\end{cases}}\)

Cộng vế theo vế ta được

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{6a-b-c-2}{8}+\frac{6b-c-a-2}{8}+\frac{6c-a-b-2}{8}\)

\(=\frac{a+b+c}{2}-\frac{3}{4}\ge\frac{3}{2}.\sqrt[3]{abc}-\frac{3}{4}=\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\)

10 tháng 4 2017

Mai mình làm cho

6 tháng 7 2020

a

Dễ thấy theo AM - GM ta có:

\(M=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{y}{x}+\frac{x}{4y}\right)+\frac{3x}{4y}\ge2\sqrt{\frac{y}{x}\cdot\frac{x}{4y}}+\frac{3\cdot2y}{4y}=\frac{5}{2}\)

Đẳng thức xảy ra tại \(x=2y\)

b

\(x^2+3+\frac{1}{x^2+3}=\left[\frac{\left(x^2+3\right)}{9}+\frac{1}{x^2+3}\right]+\frac{8\left(x^2+3\right)}{9}\)

\(\ge2\sqrt{\frac{x^2+3}{9}\cdot\frac{1}{x^2+3}}+\frac{8\left(x^2+3\right)}{9}=\frac{2}{3}+\frac{8\cdot3}{9}=\frac{10}{3}\)

Đẳng thức xảy ra tại x=0

7 tháng 11 2018

\(a)\)\(x+xy+y=-6\)

\(\Leftrightarrow\)\(\left(x+1\right)\left(y+1\right)=-5\)

Lập bảng xét TH ra là xong 

\(b)\) CM : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

\(\Leftrightarrow\)\(\frac{x+y}{xy}\ge\frac{4}{x+y}\)

\(\Leftrightarrow\)\(\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow\)\(x^2+2xy+y^2-4xy\ge0\)

\(\Leftrightarrow\)\(\left(x-y\right)^2\ge0\) ( luôn đúng ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)

Xin thêm 1 slot đi hok về làm cho -,- 

7 tháng 11 2018

\(b)\) CM : \(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2\)

\(x^2+y^2\ge\frac{\left(x+y\right)^2}{1+1}=\frac{1}{2}\left(x+y\right)^2\) ( bđt Cauchy-Schawarz dạng Engel ) 

Ta có : 

\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+2017\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}+2017\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}+2017=\frac{\left(2+\frac{4}{2}\right)^2}{2}+2017=2025\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1\)

Bài này còn có cách khác là sử dụng tính chất tổng 2 phân số nghịch đảo nhau nhá :)) 

Chúc bạn học tốt ~ 

19 tháng 3 2019

Chỉ cần áp dụng một vài BĐT thôi :)

Có: \(x^2+y^2\ge2xy\)

\(\left(x+y\right)^2\ge2\left(x^2+y^2\right)\)

\(\Leftrightarrow\frac{1}{2}\ge x^2+y^2\)

Áp dụng các BĐT trên vào CM Bđt cần Cm:

\(\frac{2}{xy}+\frac{3}{x^2+y^2}\ge\frac{2}{\frac{x^2+y^2}{2}}+\frac{3}{x^2+y^2}=\frac{4}{x^2+y^2}+\frac{3}{x^2+y^2}=\frac{7}{x^2+y^2}\ge\frac{7}{\frac{1}{2}}=14\)

Vậy ...  đpcm

28 tháng 10 2016

Câu hỏi của Tuấn Anh Nguyễn - Toán lớp 9 - Học toán với OnlineMath

2 tháng 8 2018

Tham khảo bài giải nhé !

CHúc bạn học tốt

19 tháng 10 2016

Đặt \(a=\sqrt{\frac{yz}{x}},b=\sqrt{\frac{zx}{y}},c=\sqrt{\frac{xy}{z}}\) \(\Rightarrow ab+bc+ac=1\)

Suy ra bài toán trở về dạng chứng minh \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\le\frac{9}{4}\)

\(\Leftrightarrow1-\frac{a^2}{a^2+1}+1-\frac{b^2}{b^2+1}+1-\frac{c^2}{c^2+1}\le\frac{9}{4}\)

\(\Leftrightarrow\frac{a^2}{a^2+1}+\frac{b^2}{b^2+1}+\frac{c^2}{c^2+1}\ge\frac{3}{4}\)(*)

Áp dụng bất đẳng thức AM-GM ta có : 

\(\frac{a^2}{a^2+1}+\frac{b^2}{b^2+1}+\frac{c^2}{c^2+1}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3}\)

Đặt t = a+b+c \(\Rightarrow a^2+b^2+c^2=t^2-2\)

Ta cần chứng minh \(\frac{t^2}{t^2+1}\ge\frac{3}{4}\Leftrightarrow4t^2\ge3t^2+3\Rightarrow t^2\ge3\)(Luôn đúng vì \(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)=3\))

Vậy ta có đpcm

4 tháng 1 2020

Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và không nên:

  • Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mình
  • Chỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi.
27 tháng 8 2018

Ta có \(B=\frac{x^4}{x+xy}+\frac{y^4}{y+xy}\ge\frac{\left(x^2+y^2\right)^2}{x+y+2xy}\ge\frac{\left(x+y\right)^4}{4\left(x+y+2\right)}=\frac{a^4}{4\left(a+2\right)}\)

Ta có \(x+y\ge2\sqrt{xy}=2\Rightarrow a\ge2\)

Ta cần \(\frac{a^4}{4\left(a+2\right)}\ge1\Leftrightarrow a^4\ge4a+8\Leftrightarrow\frac{1}{2}a^4+\frac{1}{2}a^4\ge4a+8\)

Ta có\(\frac{1}{2}a^4\ge\frac{1}{2}.16=8;a^3\ge8\Rightarrow\frac{1}{2}a^4\ge4a\Rightarrow a^4\ge4a+8\)

=> B>=1

dấu = xảy ra <=> x=y=1