Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2^2+2^3+2^4+2^5\)
\(=\left(2^2+2^3\right)+\left(2^4+2^5\right)\)
\(=2^2\left(1+2\right)+2^4\left(1+2\right)\)
\(=2^2.3+2^4.3\)
\(=3\left(2^2+2^4\right)⋮3\)
b) \(4^{20}+4^{21}+4^{22}+4^{23}\)
\(=\left(4^{20}+4^{21}\right)+\left(4^{22}+4^{23}\right)\)
\(=4^{20}\left(1+4\right)+4^{22}\left(1+4\right)\)
\(=4^{20}.5+4^{22}.5\)
\(=5\left(4^{20}+4^{22}\right)⋮5\)
a)
2
2
+
2
3
+
2
4
+
2
5
2
2
+2
3
+2
4
+2
5
=
(
2
2
+
2
3
)
+
(
2
4
+
2
5
)
=(2
2
+2
3
)+(2
4
+2
5
)
=
2
2
(
1
+
2
)
+
2
4
(
1
+
2
)
=2
2
(1+2)+2
4
(1+2)
=
2
2
.
3
+
2
4
.
3
=2
2
.3+2
4
.3
=
3
(
2
2
+
2
4
)
⋮
3
=3(2
2
+2
4
)⋮3
b)
4
20
+
4
21
+
4
22
+
4
23
4
20
+4
21
+4
22
+4
23
=
(
4
20
+
4
21
)
+
(
4
22
+
4
23
)
=(4
20
+4
21
)+(4
22
+4
23
)
=
4
20
(
1
+
4
)
+
4
22
(
1
+
4
)
=4
20
(1+4)+4
22
(1+4)
=
4
20
.
5
+
4
22
.
5
=4
20
.5+4
22
.5
=
5
(
4
20
+
4
22
)
⋮
5
=5(4
20
+4
22
)⋮5
Gọi phần a, là A,ta có:
A=1+4+42+43+...+42000
4.A=4.(1+4+42+...+42000)
4.A=4+42+43+44+...+42001
4.A-A=(4+42+43+...+42001)-(1+4+42+...+42000)
3.A=4+42+43+...+42001 -1-4-42-...-42000
3.A=42001-1
A=(42001-1):3
K CHO MIK NHÉ !
A=(21+22+23+24+25+26) + . . . + (22005+22006+22007+22008+22009+22010)
A=2^1(1+2+22+23+24+25)+...................+22005(1+2+22+23+24+25)
A=2.63+......................+22005.63
A=63.(2+..............................+22005)
VÌ 63 CHIA HẾT CHO 3 VÀ 7 VẬY A CHIA HẾT CHO 3 VÀ 7.
D=(7+7^2)+(7^3+7^4)+...+(7^2009+7^2010)
D=7.(1+7)+7^3.(1+7)+...+7^2009.(1+7)
D=8.(7+7^3+...+7^2009)
=> D chia hết cho 8
D=(7+7^2+7^3)+(7^4+7^5+7^6)+...+(7^2008+7^2009+7^2010)
D=7.(1+7+49)+7^4.(1+7+49)+...+7^2008.(1+7+49)
D=57.(7+7^4+...+7^2008)
=> D chia hết cho 57
chúc bạn học tốt nha
nhớ ủng hộ mk với nha
a) A=2^1+2^2+2^3+...+2^2010
A=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)
A=2.(1+2)+2^3 . (1+2)+...+2^2009.(1+2)
A=3.(2+2^3+2^5+...+2^2009)
=> A chia hết cho 3
A=(2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^2008+2^2009+2010)
A=2.(1+2+4)+2^4.(1+2+4)+...+2^2008.(1+2+4)
A=7.(2+2^4+...+2^2008)
=> A chia hết cho 7
bạn ghi câu hỏi tách nhau ra thành 4 câu khác nhau đi mk trả lời cho ko thì dài lắm
A=1+3+32+33+...+320
A=(1+3)+(32+33)+(34+35)+...+(319+320)
A= 4+32(1+3)+34(1+3)+......+319(1+3)
A=4+32.4+34.4+....+319.4
A=4.(32+34+...+319) =>A chia hết cho 4
0+(
a: \(=2^2\left(1+2\right)+2^4\left(1+2\right)=3\left(2^2+2^4\right)⋮3\)
b: \(=4^{20}\left(1+4\right)+4^{22}\left(1+4\right)=5\left(4^{20}+4^{22}\right)⋮5\)
c: \(A=\left(1+4+4^2\right)+...+4^{96}\left(1+4+4^2\right)\)
\(=21\left(1+...+4^{96}\right)⋮21\)
d: \(B=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{35}\left(1+7\right)\)
\(=8\left(7+7^3+...+7^{35}\right)⋮8\)
\(B=7\left(1+7+7^2\right)+...+7^{34}\left(1+7+7^2\right)\)
\(=57\left(7+...+7^{34}\right)\) chia hếtcho 3 và 19