K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 2 2023

Lời giải:

$14.7^{2021}=35.7^{2021}-3.49^x$

$2.7^{2022}=5.7^{2022}-3.7^{2x}$

$3.7^{2x}=5.7^{2022}-2.7^{2022}=7^{2022}(5-2)=3.7^{2022}$

$\Rightarrow 7^{2x}=7^{2022}$

$\Rightarrow 2x=2022$

$\Rightarrow x=2022:2=1011$

6 tháng 4 2022

\(14.7^{2021}=35.7^{2021}-3.49^x\)

\(\Leftrightarrow2.7^{2022}=5.7^{2022}-3.7^{2x}\)

\(\Leftrightarrow3.7^{2x}=3.7^{2022}\) \(\Leftrightarrow7^{2x}=7^{2022}\)

\(\Leftrightarrow2x=2022\Leftrightarrow x=1011\) (TM \(x\in Z\))

Vậy \(x=1011\)

Bạn Đúc giúp người kiểu giì đấy :))) , giúp mà không giúp hết à ???

a) 2x + 2020  2021

=> 2x = 2021 - 2020

=> 2x = 1

=> 2x = 20

=> x = 0

b) Ta có :

4x + 14 ⋮ x + 2

=> 4. ( x + 2 ) + 6 ⋮ x + 2

Mà 4 . ( x + 2 ) ⋮ x + 2 

=> 6 ⋮ x + 2 => x + 2 ∈ { 1 ; 2 ; 3 ;6 }

=> x ∈ { 0 ; 1 ; 4 } ( do x ∈ N )

c) ( x - 3 )2021 - ( x - 3 )5 = 0

=> ( x - 3 )5 . [ ( 2 - 3 )2016 - 1 ] = 0

\(\Rightarrow\orbr{\begin{cases}\left(x-3\right)^5=0\\\left(x-3\right)^{2016}-1=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\\left(x-3\right)^{2016}=1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=3\\x-3\in=\left\{-1;1\right\}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=3\\x\in=\left\{2;4\right\}\end{cases}}\)

a) 2x = 2021 - 2020

    2x = 1

\(\Rightarrow\)2x = 10

\(\Rightarrow\)x = 0

30 tháng 7 2020

Ta có : A = \(\frac{10^{2020}+1}{10^{2021}+1}\)

=> 10A = \(\frac{10^{2021}+10}{10^{2021}+1}=1+\frac{9}{10^{2021}+1}\)

Lại có : \(B=\frac{10^{2021}+1}{10^{2022}+1}\)

=> \(10B=\frac{10^{2022}+10}{10^{2022}+1}=1+\frac{9}{10^{2022}+1}\)

Vì \(\frac{9}{10^{2022}+1}< \frac{9}{10^{2021}+1}\)

=> \(1+\frac{9}{10^{2022}+1}< 1+\frac{9}{10^{2022}+1}\)

=> 10B < 10A

=> B < A

b) Ta có : \(\frac{2019}{2020+2021}< \frac{2019}{2020}\)

Lại có : \(\frac{2020}{2020+2021}< \frac{2020}{2021}\)

=> \(\frac{2019}{2020+2021}+\frac{2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)

=> \(\frac{2019+2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)

=> B < A

13 tháng 2 2022

sai rồi

16 tháng 8 2020

a) Ta có A = \(\frac{2^{2018}+1}{2^{2019}+1}\)

=> 2A = \(\frac{2^{2019}+2}{2^{2019}+1}=1+\frac{1}{2^{2019}+1}\)

Lại có B = \(\frac{2^{2017}+1}{2^{2018}+1}\)

=> 2B = \(\frac{2^{2018}+2}{2^{2018}+1}=\frac{2^{2018}+1+1}{2^{2018}+1}=1+\frac{1}{2^{2018}+1}\)

Vì \(\frac{1}{2^{2018}+1}>\frac{1}{2^{2019}+1}\Rightarrow1+\frac{1}{2^{2018}+1}>1+\frac{1}{2^{2019}+1}\Rightarrow2B>2A\Rightarrow B>A\)

24 tháng 5 2020

Ta có: \(\frac{2019}{2020}>\frac{2019}{2020+2021};\frac{2020}{2021}>\frac{2020}{2020+2021}\)

=> \(\frac{2019}{2020}+\frac{2020}{2021}>\frac{2019}{2020+2021}+\frac{2020}{2020+2021}=\frac{2019+2020}{2020+2021}\)

=> A > B.

20 tháng 8 2021

2021 mũ 2021 và 6969 mũ 2021 mũ 2021 nhé.Mk hơi vội nên viết sai

11 tháng 6 2020

Xét 3 số tự nhiên liên tiếp \(2020^{2021}-1;2020^{2021};2020^{2022}\) luôn có 1 số chia hết cho 3

Mà \(2020\equiv1\left(mod3\right)\Rightarrow2020^{2021}\equiv1\left(mod3\right)\)

Khi đó một trong 2 số \(2020^{2021}-1;2020^{2021}+1\) chia hết cho 3

=> đpcm

29 tháng 6 2020

ta lấy:2019:2021=0,994.....

2021:2023=0,998

0,994...<0,998...   vậy:2019/2021<2021/2023

29 tháng 6 2020

Ta thấy:

\(1-\frac{2019}{2021}=\frac{2}{2021}\)

\(1-\frac{2021}{2023}=\frac{2}{2023}\)

Vì \(\frac{2}{2021}>\frac{2}{2023}\)hay \(1-\frac{2019}{2021}>1-\frac{2021}{2023}\)nên \(\frac{2019}{2021}< \frac{2021}{2023}\)

Vậy \(\frac{2019}{2021}< \frac{2021}{2023}\)