K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2020

a) \(A=x^2-2x+5\)

\(=\left(x^2-2x+1\right)+4\)

\(=\left(x-1\right)^2+4\)

Vì \(\left(x-1\right)^2\ge0;\forall x\)

\(\Rightarrow\left(x-1\right)^2+4\ge0;\forall x\)

b) a sẽ làm tắt 1 vài bước nhé khi nào kiểm tra thì em làm theo mẫu a là được 

\(B=4x^2+4x+11\)

\(=4\left(x^2+x+\frac{11}{4}\right)\)

\(=4\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+\frac{11}{4}\right)\)

\(=4\left[\left(x+\frac{1}{2}\right)^2+\frac{10}{4}\right]\)

\(=4\left(x+\frac{1}{2}\right)^2+10\ge10;\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy \(B_{min}=10\Leftrightarrow x=\frac{-1}{2}\)

c) Tìm GTLN nhé 

 \(C=5-8x-x^2\)

\(=-x^2-2.x.4-16+16+5\)

\(=-\left(x+4\right)^2+21\)

Vì \(-\left(x+4\right)^2\le0;\forall x\)

\(\Rightarrow-\left(x+4\right)^2+21\le21;\forall x\)

Dấu "="xảy ra\(\Leftrightarrow\left(x+4\right)^2=0\)

                     \(\Leftrightarrow x=-4\)

Vậy\(C_{max}=21\Leftrightarrow x=-4\)

18 tháng 9 2020

A = x2 - 2x + 5

= ( x2 - 2x + 1 ) + 4

= ( x - 1 )2 + 4 ≥ 4 > 0 ∀ x ( đpcm )

B = 4x2 + 4x + 11

= ( 4x2 + 4x + 1 ) + 10

= ( 2x + 1 )2 + 10 ≥ 10 ∀ x

Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2

=> MinB = 10 <=> x = -1/2

C = 5 - 8x - x2

= -( x2 + 8x + 16 ) + 21

= -( x + 4 )2 + 21 ≤ 21 ∀ x

Đẳng thức xảy ra <=> x + 4 = 0 => x = -4

=> MaxC = 21 <=> x = -4

12 tháng 7 2017

Bài 1:

\(2x^2+2x+1=2\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{1}{2}=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\Rightarrowđpcm\)Bài 2:

\(A=x^2-3x+5=\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{11}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\)Với mọi giá trị của x ta có:

\(\left(x-\dfrac{3}{2}\right)^2\ge0\Rightarrow\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)

Vậy GTNN của A là \(\dfrac{11}{4}\)

Để \(A=\dfrac{11}{4}\) thì \(x-\dfrac{3}{2}=0\Rightarrow x=\dfrac{3}{2}\)

b, \(B=\left(2x-1\right)^2+\left(x+2\right)^2=4x^2-4x+1+x^2+4x+4=5x^2+5=5\left(x^2+1\right)\)

Với mọi giá trị của x ta có:

\(x^2\ge0\Rightarrow x^2+1\ge1\Rightarrow5\left(x^2+1\right)\ge5\)

Vậy \(Min_B=5\)

Để B = 5 thì \(x^2=0\Rightarrow x=0\)

Bài 3:

\(A=4-x^2+2x=-\left(x^2-2x+1\right)+5=-\left(x-1\right)^2+5\)

Với mọi giá trị của x ta có:

\(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow-\left(x-1\right)^2+5\le5\)Vậy \(Max_A=5\)

Để A = 5 thì \(x-1=0\Rightarrow x=1\)

b, \(B=4x-x^2=4-\left(4-4x+x^2\right)=4-\left(2-x\right)^2\)

Với mọi giá trị của x ta có :

\(\left(2-x\right)^2\ge0\Rightarrow4-\left(2-x\right)^2\le4\)

Vậy \(Max_B=4\)

Để B = 4 thì \(2-x=0\Rightarrow x=2\)

12 tháng 7 2017

Bài 1: CMR các biểu thức sau luôn dương với mọi giá trị của biểu thức

\(2x^2+2x+1\)

Ta có: \(2x^2>2x\forall x\)\(2x^2\ge0\)

\(\Rightarrow2x^2-2x\ge0\)

Vậy \(2x^2+2x+1\ge1\) (đpcm)

25 tháng 8 2016

1/ \(A=4x^2-12x+15=\left(2x\right)^2-2.3.2x+3^2+6=\left(2x-3\right)^2+6\ge6\)

Đẳng thức xảy ra khi: \(2x-3=0\Rightarrow2x=3\Rightarrow x=3:2\Rightarrow x=1,5\)

Vậy giá trị nhỏ nhất của A là 6 khi x = 1,5

2a/ \(B=-x^2+4x+4=-\left(x^2-4x-4\right)=-\left(x^2-2.2x+2^2-8\right)=-\left[\left(x-2\right)^2-8\right]\)

\(\Rightarrow B=-\left(x-2\right)^2+8\le8\)

Đẳng thức xảy ra khi: \(x-2=0\Rightarrow x=2\)

Vậy giá trị lớn nhất của B là 8 khi x = 2

2b/ \(C=4-16x^2-8x=-16x^2-8x+4=-\left(16x^2+8x-4\right)=-\left[\left(4x\right)^2+2.4x+1-5\right]\)

\(\Rightarrow C=-\left[\left(4x+1\right)^2-5\right]=-\left(4x+1\right)^2+5\le5\)

Đẳng thức xảy ra khi: 4x + 1 = 0  => x = -0,25

Vậy giá trị lớn nhất của C là 5 khi x = -0,25

29 tháng 9 2019

\(A=\left[\left(2x\right)^2+2.2x.y+y^2\right]+\left(16y^2-8y+1\right)\)

\(=\left(2x+y\right)^2+\left(4y-1\right)^2\ge0\)

Đẳng thức xảy ra khi \(x=-\frac{1}{8};y=\frac{1}{4}\)

\(B=\frac{2x^2-\left(x^2+2\right)}{x^2+2}=\frac{2x^2}{x^2+2}-2\ge-1\)

Đẳng thức xảy ra khi x =0

Tí làm tiếp

29 tháng 9 2019

c)Đề sai:v

d) ĐK: \(x\ne1\). Bài này chỉ có min thôi nha!

\(D=\frac{3x^2-8x+6-2x^2+4x-2}{x^2-2x+1}+\frac{2\left(x^2-2x+1\right)}{x^2-2x+1}\)

\(=\frac{\left(x-2\right)^2}{\left(x-1\right)^2}+2\ge2\)

Đẳng thức xảy ra khi x = 2

3 tháng 12 2018

\(x^2-4x+1=x^2-2\cdot x\cdot2+4-4+1=\left(x-2\right)^2-4+1\)

\(=\left(x-2\right)^2-3\)    \(\forall x\in Z\)

\(\Rightarrow A_{min}=-3khix=2\)

3 tháng 12 2018

\(a,A=x^2-4x+1=x^2-2.2.x+2^2-3=\left(x-2\right)^2-3\ge-3\)

dấu = xảy ra khi x-2=0

=> x=2

Vậy MinA=-3 khi x=2

\(b,B=5-8x-x^2=-\left(x^2+8x+5\right)=-\left(x^2+2.4.x+4^2\right)+9=-\left(x+4\right)^2+9\le9\)

dấu = xảy ra khi x+4=0

=> x=-4

Vậy MaxB=9 khi x=-4

\(c,C=5x-x^2=-\left(x^2-5x\right)=-\left(x^2-\frac{2.x.5}{2}+\frac{25}{4}\right)+\frac{25}{4}=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)

dấu = xảy ra khi \(x-\frac{5}{2}=0\)

=> x=\(\frac{5}{2}\)

Vậy Max C=\(\frac{25}{4}\)khi x=\(\frac{5}{2}\)

\(E=\frac{1}{x^2+5x+14}=\frac{1}{x^2+\frac{2.x.5}{2}+\frac{25}{4}+\frac{31}{4}}=\frac{1}{\left(x+\frac{5}{2}\right)^2+\frac{31}{4}}\)

\(\left(x+\frac{5}{2}\right)^2+\frac{31}{4}\ge\frac{31}{4}\)

dấu = xảy ra khi \(x+\frac{5}{2}=0\)

=> x\(=-\frac{5}{2}\)

vì tử thức >0,mẫu thức nhỏ nhất và lớn hơn 0 => E lớnnhất khi mẫu thức nhỏ nhất 

Vậy \(MaxE=\frac{31}{4}\)khi x\(=-\frac{5}{2}\)

19 tháng 7 2018

1)Ta có A =x- 4x + 1

             = x2 - 2.2.x + 22 - 3

             = ( x - 2 )-3

  Với x \(\inℝ\), ( x - 2 )\(\ge\)

  \(\Rightarrow\)(x - 2 )- 3 \(\ge\)-3

Vậy GTNN của A là -3

2) Ta có B = 4x+ 4x + 11

                   = ( 2x )+ 2.2x.1 + 12 +10

                  = ( 2x + 1 )+10

*tương tự câu 1*

3) *tương tự câu 2*

4) Ta có P = ( 2x + 1 )2 + ( x + 2)

                   = [ ( 2x )+ 2.2x.1 + 12  ] + [ x+ 2.x.2 + 22 ]

                    = 4x2 + 4x +1 + x2 + 4x + 4 

                    = 5x2 + 8x + 5

       Với x\(\inℝ\), 5x2 \(\ge\)0

             mà GTNN của 8x + 5 là 5

\(\Rightarrow\) GTNN của 5x2 + 8x + 5  là 5

  Vậy GTNN của  ( 2x + 1 )2 + ( x + 2) là 5

19 tháng 9 2019

Cm: Ta có: 

a) A = x2 - 8x + 20 = (x2 - 8x + 16) + 4 = (x - 4)2 +  4 > 0 \(\forall\) x(vì (x - 4)2 \(\ge\)\(\forall\)x ; 4 > 0)

=> A luôn dương với mọi x

b) B = 4x2 - 12x + 11 = [(2x)2 - 12x + 9] + 2 = (2x - 3)2 + 2 > 0 \(\forall\)x (vì (2x - 3)2 \(\ge\)\(\forall\)x; 2 > 0)

=> B luôn dương với mọi x

c) C = x2 - x + 1 = (x2 - x + 1/4) + 3/4 = (x -  1/2)2 + 3/4 > 0 \(\forall\)x (vì (x - 1/2)2 \(\ge\)\(\forall\)x; 3/4 > 0)

=> C luôn dương với mọi x

* Tìm x

3(x + 2)2 + (2x - 1)2 - 7(x + 3)(x - 3) = 36

=> 3(x2 + 4x + 4) + 4x2 - 4x + 1 - 7(x2 - 9) = 36

=> 3x2 + 12x + 12 + 4x2 - 4x + 1 - 7x2 + 63 = 36

=> 8x + 76 = 36

=> 8x = 36 - 76

=> 8x = -40

=> x = -40 : 8 = -5

a: \(=-\left(x^2+10x-11\right)\)

\(=-\left(x^2+10x+25-36\right)\)

\(=-\left(x+5\right)^2+36< =36\)

Dấu '=' xảy ra khi x=-5

b: \(=-\left(x^2-6x+5\right)\)

\(=-\left(x^2-6x+9-4\right)\)

\(=-\left(x-3\right)^2+4< =4\)

Dấu '=' xảy ra khi x=3

c: \(=-2\left(x^2-x+\dfrac{5}{2}\right)\)

\(=-2\left(x^2-x+\dfrac{1}{4}+\dfrac{9}{4}\right)\)

\(=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}< =-\dfrac{9}{2}\)

Dấu '=' xảy ra khi x=1/2

d: \(=2x+8-x^2-4x\)

\(=-x^2-2x+8\)

\(=-\left(x^2+2x-8\right)\)

\(=-\left(x^2+2x+1-9\right)\)

\(=-\left(x+1\right)^2+9< =9\)

Dấu '=' xảy ra khi x=-1

22 tháng 7 2019

\(A=x^2+3x+7\)

\(=x^2+2.1,5x+2,25+4,75\)

\(=\left(x+1,5\right)^2+4,75\ge4,75\)

Vậy \(A_{min}=4,75\Leftrightarrow x=-1,5\)

22 tháng 7 2019

\(B=2x^2-8x\)

\(=2\left(x^2-4x\right)\)

\(=2\left(x^2-4x+4-4\right)\)

\(=2\left[\left(x-2\right)^2-4\right]\)

\(=2\left(x-2\right)^2-8\ge-8\)

Vậy \(B_{min}=-8\Leftrightarrow x=2\)

17 tháng 9 2019

Bài 3:

a) A = 9x2 + 42x + 49

= (3x + 7)2 (1)

Thay x = 1 vào (1)

Ta có: (3.1 + 7)2

= 102

= 100

Bài 1:

a) C = 4x2 - 4x

= [(2x)2 - 2.2x.1 + 1] - 1

= (2x - 1)2 - 1

Ta có: (2x - 1)2 ≥ 0 với ∀x

Nên: (2x - 1)2 - 1 ≥ -1 với ∀x

Dấu "=" xảy ra ⇔ (2x - 1)2 = 0

2x - 1 = 0

2x = 1

x = \(\frac{1}{2}\)

Vậy GTNN của biểu thức C là -1 khi x = \(\frac{1}{2}\)

Bài 2:

b) B = (x + 4)(2 - x)

= 2x - x2 + 8 - 4x

= -x2 - 2x + 8

= -(x2 + 2x + 1 - 1) + 8

= -(x + 1)2 + 9

Ta có: -(x + 1)2 ≤ 0 với ∀x

Nên: -(x + 1)2 + 9 ≤ 9 với ∀x

Dấu "=" xảy ra ⇔ -(x + 1)2 = 0

x + 1 = 0

x = -1

Vậy GTLN của biểu thức B là 9 khi x = -1

Bạn ơi bài 2a có đúng đề bài không vậy bạn?lolang

18 tháng 9 2019

Bạn ơi câu 2a thiếu mũ 2 ở x nha :3