Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 8( Mình không viết đè nữa nha)
a) 2-1/1.2 + 3-2/2.3 + 4-3/3.4 +…..+ 100-99/99.100
= 1 – 1/2 + 1/2 – 1/3 + 1/3 – 1/4 +…..+ 1/99 – 1/100
= 1 – 1/100 < 1
= 99/100 < 1
Vậy A< 1
Trả lời
\(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}\)
\(\Leftrightarrow\frac{1}{3}+\left(\frac{1}{31}+\frac{1}{35}+\frac{1}{37}\right)+\left(\frac{1}{47}+\frac{1}{53}+\frac{1}{61}\right)< \frac{1}{3}+\left(\frac{1}{30}+\frac{1}{30}+\frac{1}{30}\right)+\left(\frac{1}{45}+\frac{1}{45}+\frac{1}{45}\right)\)
\(\Leftrightarrow\frac{1}{3}+\left(\frac{1}{31}+\frac{1}{35}+\frac{1}{37}\right)+\left(\frac{1}{47}+\frac{1}{53}+\frac{1}{61}\right)< \frac{1}{3}+\frac{1}{10}+\frac{1}{15}\)
\(\frac{1}{3}+\left(\frac{1}{31}+\frac{1}{35}+\frac{1}{37}\right)+\left(\frac{1}{47}+\frac{1}{53}+\frac{1}{61}\right)< \frac{1}{2}\)
Vậy \(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \frac{1}{2}\left(đpcm\right)\)
1/2 lớn hơn
vì phân số 1/2 có mẫu số nhỏ hơn các phân số kia nên phân số 1/2 sẽ lớn hơn các phân số kia
Ta thấy: \(\frac{1}{31}+\frac{1}{35}+\frac{1}{37}< \frac{1}{30}\)
\(\frac{1}{37}< \frac{1}{35}< \frac{1}{31}< \frac{1}{30}\)
\(\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \frac{1}{45}\)
\(\frac{1}{61}< \frac{1}{53}< \frac{1}{47}< \frac{1}{45}\)
Do đó: \(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \frac{1}{3}+\frac{1}{30}\cdot3+\frac{1}{45}\cdot3=\frac{1}{2}\)
Bài 1: <Cho là câu a đi>:
a. \(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\)
\(\rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\)
\(\rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{49}{50}\)
\(\rightarrow1-\frac{1}{x+1}=\frac{49}{50}\)
\(\rightarrow\frac{1}{x+1}=1-\frac{49}{50}=\frac{1}{50}\)
\(\rightarrow x+1=50\rightarrow x=49\)
Vậy x = 49.
\(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}<\frac{1}{2}\)
Ta có: Gọi dãy số cần chứng minh là A
\(A<\frac{1}{3}+\left(\frac{1}{30}+\frac{1}{30}+\frac{1}{30}\right)+\left(\frac{1}{60}+\frac{1}{60}+\frac{1}{60}+\frac{1}{60}\right)\)
\(A<\frac{1}{3}+\frac{3}{30}+\frac{4}{60}\)
\(A<\frac{10}{30}+\frac{3}{30}+\frac{2}{30}\)
\(A<\frac{15}{30}=\frac{1}{2}\)
Vậy \(A<\frac{1}{2}\)
k nha
Đặt A = 1/3 + 1/31 + 1/35 + 1/37 + 1/53 + 1/61
A < 1/3+ ( 1/30+1/30+1/30)+( 1/45+1/45+1/45)
A < 1/3+1/10+1/15
A < 1/2
Chứng tỏ 1/3+1/31+1/35+1/37+1/53+1/61<1/2
k nhé, ủng hộ k, mk trả lời đầu tiên đó
A) \(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \frac{1}{3}+\frac{1}{30}.3+\frac{1}{45}.3\)
\(< \frac{1}{3}+\frac{1}{10}+\frac{1}{15}=\frac{1}{2}\)
B) \(\left(x-5\right).\left(x-y+1\right)=-23\)
=> x - 5 = 1; x - y + 1 = -23 hoặc x - 5 = -1; x - y + 1 = 23 hoặc x - 5 = 23; x - y + 1 = -1 hoặc x - 5 = -23; x - y + 1 = 1
+ Với x - 5 = 1; x - y + 1 = -23
=> x = 6; x - y = -22
=> x = 6; y = 28
... Bn tự lm típ
Ủng hộ mk nha ^_-