Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a,\(A=3+3^2+3^3+...+3^{2010}\)
\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)
\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)
\(=3.40+...+3^{2007}.40\)
\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)
Vì A chia hết cho 40 nên chữ số tận cùng của A là 0
b,\(A=3+3^2+3^3+...+3^{2010}\)
\(3A=3^2+3^3+...+3^{2011}\)
\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)
\(2A=3^{2011}-3\)
\(2A+3=3^{2011}\)
Vậy 2A+3 là 1 lũy thừa của 3
Bài 1:
a){x-[25-(92-16.5)30.243]-14}=1
=>{x-[25-1.243]-14}=1
=>x-(-13799)-14=1
=>x-(-13813)=1
=>x=1+(-13813)
=>x=-13812
b) (x+1)+(x+2)+....+(x+100)=7450
=>100x+(1+2+...+100)=7450
=>100x+5050=7450
=>x=(7450-5050):100
=>x=24
Bài 2:
S=3+6+...+2016
S=(2016-3):3+1=672 ( số số hạng)
S=(2016+3)x672:2=678384
Bài 3 dài lắm mỏi tay lắm rùi
b) n mũ 2 + 2006 là hợp số
hai câu còn lại ko bt
Hok tốt
^_^
A=1-2+3-4+.....................-98+99 ( có tất cả 99 số hạng )
A=(1-2)+(3-4)+.........+(97-98)+99 ( có tất cả49 nhóm dư 1 số )
A=(-1)+(-1)+.........+(-1)+99 (có tất cả 49 số -1 và 1 số 99
A=(-49)+99 B=n=1-4+7-10+..........-100+103 (có tất cả 35 số hạng )
A=50 B=n=(1-4)+(4-7)+.(7-10)+.....+(97-100)+103 (có tất cả 17 nhóm dư 1 số)
vậy A= 50 B=n=(-3)+(-3)+..............+(-3)+103 (có 17 số -3 và 1 số 103)
B=n=(-51)+103
B=n=52
vậy B =52
a )
Ta co S = ( 2 + 22 + 23 + 24 + 25 ) + ...... + ( 296 + 297 + 298 +299 + 2100 )
= 2 ( 1 + 2 + 2.2 + 2.2.2 + 2.2.2.2 ) + .... + 296 ( 1 + 2 + 2.2 + 2.2.2 + 2.2.2.2 )
= 2.31 + .....+ 296.31
= 31 ( 2 + ... + 296 ) chia het cho 31
b ) Goi d laf UC ( 3n+1 ; 4n+1 )
=> 3n + 1 ⋮ d va 4n + 1 ⋮ d
=> 4(3n + 1)⋮ d va3(4n +1) ⋮ d
=> 12n + 4 ⋮ d và 12n + 3 ⋮ d
=> ( 12n + 4 ) - ( 12n + 3 ) ⋮ d
=> 1 ⋮ d => d = 1
Vi ƯC ( 3N+1;4N+1 ) = 1 => 3N+1;4N+1 là nguyên tố cùng nhau
c ) Xét x > 0
=> |x| + x = x+x = 2x = 0 => x = 0 ( loại )
Xét x < 0
=> |x| + x = - x + x = 0 ( tm)
Vậy x < 0
Cảm ơn nhìu!