K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2017

a) phải là a.d<b.c

 chứ ko phải a,d<b,c đâu

26 tháng 12 2016

a) xem lại thiếu cái đk gì đó

b) thích chọn số nào tùy

 \(\frac{1}{2}=\frac{2}{4}< \frac{3}{4}< \frac{4}{4}< \frac{5}{4}< \frac{6}{4}< \frac{7}{4}< \frac{8}{4}< \frac{9}{4}< \frac{10}{4}=\frac{5}{2}\)

19 tháng 8 2015

a) Ta có a / b < c / d khi ad < bc                                                                  (1)

Thêm ab vào 2 vế của (1), ta có:   ad+ab <bc+ab

                                                 a(b+d) < b(a+c) suy ra a / b<(a+c) / (b+c)    (2)

Thêm cd vào 2 vế của (1), ta có:   ad +cd<bc+cd

                                                 d(a+c) <c(b+d) suy ra (a+c) / (b+d)<c / d     (3)

Từ (2) và (3) suy ra: a / b < (a+c) / (b+d) < c / d

23 tháng 6 2015

bài này mk làm rồi, giờ giải lại à

Vì b,d>0 nênb+d>0

Ta có: a/b<c/d=>ad<bc(*)

Thêm ab vào 2 vế(*), ta được: ab+ad<ab+bc

=>a(b+d)<(a+c)b

=>a/b<a+c/b+d(1)

Thêm cd vào 2 vế (*), ta được: ad+cd<bc+cd

=>(a+c)d<(b+d)c

=>a+c/b+d<c/d(2)

Từ 1,2 => Nếu a/b<c/d thì a/b<a+c/b+d<c/d

27 tháng 9 2017

a) Vì \(\frac{a}{b}< \frac{c}{d}\) và \(b.d>0\) nên suy ra \(ad< bc\).

Tách bất đẳng thức kép cần chứng minh thành 2 bất đảng thức  \(\frac{a}{b}< \frac{a+c}{b+d}\) và  \(\frac{a+c}{b+d}< \frac{c}{d}\)

Ta cần chứng minh:

     \(\frac{a}{b}< \frac{a+c}{b+d}\)

    \(\Leftrightarrow a\left(b+d\right)< \left(a+c\right)b\) (do b, d > 0)

    \(\Leftrightarrow ab+ad< ab+cb\)

   \(\Leftrightarrow ad< cb\)

Bất đẳng thức cuối đúng nên bất đẳng thức \(\frac{a}{b}< \frac{a+c}{b+d}\) đúng.

Ta cần chứng minh tiếp:

      \(\frac{a+c}{b+d}< \frac{c}{d}\)

     \(\Leftrightarrow\left(a+c\right)d< c\left(b+d\right)\) do b.d > 0

     \(\Leftrightarrow ad+cd< cb+cd\)

    \(\Leftrightarrow ad< cb\)

Bất đẳng thức cuối đúng do giả thiết.

Vậy bài toán được chứng minh

b) Áp dụng câu a ta có:

Từ \(\frac{-1}{3}< \frac{-1}{4}\) => \(\frac{-1}{3}< \frac{-1-1}{3+4}< \frac{-1}{4}\)

Ta lấy phân số xen giữa là \(-\frac{2}{7}\) và ta có: \(\frac{-1}{3}< \frac{-2}{7}< \frac{-1}{4}\)

Áp dụng tiếp kết quả câu a ta được:

  \(\frac{-1}{3}< \frac{-1-2}{3+7}< \frac{-2}{7}< \frac{-2-1}{7+4}< \frac{-1}{4}\)

Hay là:

  \(\frac{-1}{3}< \frac{-3}{10}< \frac{-2}{7}< \frac{-3}{11}< \frac{-1}{4}\)

Và 3 phân số xen giữa là: \(-\frac{3}{10};-\frac{2}{7};-\frac{3}{11}\)

27 tháng 9 2017

a, Ta chứng minh: \(\frac{a}{b}< \frac{a+c}{b+d}\), biết \(\frac{a}{b}< \frac{c}{d}\)

\(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{cd}{bd}\)vì \(b>0;d>0\Rightarrow ad< bc\)

\(\Rightarrow ad+ab< bc+ab\Rightarrow ab+d< ba+c\Rightarrow\frac{a+c}{b+d}\)

Tương tự: \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\). Vậy \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

b, \(\frac{-1}{3}=\frac{-16}{48}< \frac{-15}{48};\frac{-14}{48};\frac{-13}{48}< \frac{-12}{48}=\frac{-1}{4}\)

Vậy 3 số hữu tỉ đó là: \(\frac{-15}{48};\frac{-14}{48};\frac{-13}{48}\)

23 tháng 5 2017

a) Ta có: \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)

\(\Rightarrow ad+ab< bc+ab\)

\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)

Từ ad < bc

\(\Rightarrow ad+cd< bc+cd\)

\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow\frac{c}{d}>\frac{a+c}{b+d}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

b) \(-\frac{1}{3}=-\frac{16}{48}< -\frac{15}{48}< -\frac{14}{48}< -\frac{13}{48}< -\frac{12}{48}=-\frac{1}{4}\)

Vậy 3 số hữu tỉ xen giữa \(-\frac{1}{3}và-\frac{1}{4}\)\(-\frac{15}{48};-\frac{14}{48};-\frac{13}{48}\)