K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2015

bạn làm phép chia đi ạ @@ sau đó thì phân tích thương thành nhân tử 

15 tháng 10 2022

a: \(A=m^6-6m^5+10m^4+m^3+98m-26\)

\(=m^6-m^4+m^3-6m^5+6m^3-6m^2+11m^4-11m^2+11m-6m^3+6m-6+17m^2+81m-20\)

\(=m^3-6m^2+11m-6+\dfrac{17m^2+81m-20}{m^3-m+1}\)

\(C=m^3-6m^2+11m-6=\left(m-1\right)\left(m-3\right)\left(m-2\right)\) luôn chia hết cho 6

 

14 tháng 2 2016

Đặt  \(P=111...111222...222\), ta có:

\(P=111...111222...222\)  (có \(100\)  số  \(1\)  và  \(100\)  số  \(2\) )

     \(=111...111000...000+222...222\)  (có   \(100\)  số  \(1\),  \(100\)  số  \(0\)  và  \(100\)  số  \(2\) )

     \(=111...111.10^{100}+2.111...111\)  

\(P=111...111\left(10^{100}+2\right)\)  

Đặt  \(111...111=k\), \(\Rightarrow\)  \(9k=999...999\)  (có  \(100\)  số  \(9\) ) nên  \(9k+1=1000...000=10^{100}\) 

Do đó,  \(P=k\left(9k+1+2\right)=k\left(9k+3\right)=3k\left(3k+1\right)\)

Mà  \(3k\)  và  \(3k+1\)  lại là  \(2\)  số tự nhiên liên tiếp nên suy ra điều phải chứng minh.

20 tháng 10 2017

Thực hiện phép chia, ta được:Thương của A chia cho B là n3 – 6n2 + 11n – 6Ta có: 3 2 3 226 11 6 12 6 6( 1) .( 1) 6.(2 1)n n n n n n nn n n n n− + − = − + − −= − + + − −Vì (n-1).n.(n+1) là tích của 3 số nguyên liên tiếp nên tích đó vừa chia hết cho 2, vừa chia hết cho 3 suy ra tích đó chia hết cho 6Mặt khác 6(2n-n2-1) chia hết cho 6=> Th¬ng cña phÐp chia A cho B lµ béi sè cña 6

 

1. Phân tích đa thức thành nhân tử: a. x2 - x - 6 b. x4 + 4x2 - 5 c. x3 - 19x - 30 2. Phân tích thành nhân tử: a. A = ab(a - b) + b(b - c) + ca(c - a) b. B = a(b2 - c2) + b(c2 - a2) + c(a2 - b2) c. C = (a + b + c)3 - a3 - b3 - c3 3. Phân tích thành nhân tử: a. (1 + x2)2 - 4x (1 - x2) b. (x2 - 8)2 + 36 c. 81x4 + 4 d. x5 + x + 1 4. a. Chứng minh rằng: n5 - 5n3 + 4n chia hết cho 120 với mọi số nguyên n. b. Chứng minh rằng: n3 - 3n2 - n + 3 chia...
Đọc tiếp

1. Phân tích đa thức thành nhân tử:

a. x2 - x - 6

b. x4 + 4x2 - 5

c. x3 - 19x - 30

2. Phân tích thành nhân tử:

a. A = ab(a - b) + b(b - c) + ca(c - a)

b. B = a(b2 - c2) + b(c2 - a2) + c(a2 - b2)

c. C = (a + b + c)3 - a3 - b3 - c3

3. Phân tích thành nhân tử:

a. (1 + x2)2 - 4x (1 - x2)

b. (x2 - 8)2 + 36

c. 81x4 + 4

d. x5 + x + 1

4. a. Chứng minh rằng: n5 - 5n3 + 4n chia hết cho 120 với mọi số nguyên n.

b. Chứng minh rằng: n3 - 3n2 - n + 3 chia hết cho 48 với mọi số lẻ n.

5. Phân tích các đa thức sau đây thành nhân tử

1. a3 - 7a - 6

2. a3 + 4a2 - 7a - 10

3. a(b + c)2 + b(c + a)2 + c(a + b)2 - 4abc

4. (a2 + a)2 + 4(a2 + a) - 12

5. (x2 + x + 1) (x2 + x + 2) - 12

6. x8 + x + 1

7. x10 + x5 + 1

6. Chứng minh rằng với mọi số tự nhiên lẻ n:

1. n2 + 4n + 8 chia hết cho 8

2. n3 + 3n2 - n - 3 chia hết cho 48

7. Tìm tất cả các số tự nhiên n để:

1. n4 + 4 là số nguyên tố

2. n1994 + n1993 + 1 là số nguyên tố

8. Tìm nghiệm nguyên của phương trình:

1. x + y = xy

2. p(x + y) = xy với p nguyên tố

3. 5xy - 2y2 - 2x2 + 2 = 0

0
23 tháng 8 2017

a. \(n^3-19n=n^3-n-18n=\left(n^2+1\right)n-18n=\left(n-1\right)n\left(n+1\right)-18n\)

Trong ba số tự nhiên liên tiếp sẽ có 1 số chia hết cho 3

\(\Rightarrow\left(n-1\right)n\left(n+1\right)\) chia hết cho 3

Trong 3 số tự nhiên sẽ có ít nhất 1 số chia hết cho 2

\(\Rightarrow\left(n-1\right)n\left(n+1\right)\) chia hết cho 2

Vì ( 2; 3 ) = 1 \(\Rightarrow\left(n-1\right)n\left(n+1\right)\) chia hết cho 6

\(\Rightarrow\left(n-1\right)n\left(n+1\right)=6k\)

\(\Rightarrow\left(n-1\right)n\left(n+1\right)-18n=6\left(k-3n\right)\) chia hết cho 6

\(\Rightarrow n^3-19n\) chia hết cho 6 ( đpcm )

23 tháng 8 2017

b. Đặt \(B=n^4-10n^2+9=\left(n^4-n^2\right)\left(n^2-9\right)=\left(n-3\right)\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

Vì n lẻ nên n = 2k +1 \(\left(k\in Z\right)\) thì:

\(B=\left(2k-2\right)2k\left(2k+2\right)\left(2k+4\right)=16\left(k-1\right)k\left(k+1\right)\left(k+2\right)\Rightarrow B⋮16\)

Và ( k -1 ). k. ( k +1).(k+2) là tích của 4 số nguyên liên tiếp nên B có chứa bọi của 2, 3, 4 => B là bội của 24 hay B chia hết cho 24 (2)

Từ (1) và (2)=>A chia hết cho 16.24=384 (đpcm)

8 tháng 8 2016

\(n^4-1=\left(n^2\right)^2-1^2=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

n lẻ  

=> n - 1 và n + 1 chẵn

Tích của 2 số chẵn liên tiếp sẽ chia hết cho 8

=> Biểu thức trên chia hết cho 8 với mọi n lẻ (đpcm)

8 tháng 8 2016

ai giải giúp mình bài 2 và bài 3 với