K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2019

a, \(a\in\left\{0,1\right\}\)

b, \(m>n\)

8 tháng 6 2017

Ta có: \(\dfrac{a}{b}< \dfrac{a+n}{b+n}\Leftrightarrow a\left(b+n\right)< b\left(a+n\right)\)\(\Leftrightarrow ab+an< ab+bn\)\(\Leftrightarrow a< b\) (vì \(n>0\)).
Vậy \(\dfrac{a}{b}< \dfrac{a+n}{b+n}\Leftrightarrow a< b.\)
Tương tự
\(\dfrac{a}{b}>\dfrac{a+n}{b+n}\Leftrightarrow a>b\) ;
\(\dfrac{a}{b}=\dfrac{a+n}{b+n}\Leftrightarrow a=b\).

22 tháng 6 2019

Ta có: ab<a+nb+n⇔a(b+n)<b(a+n)ab<a+nb+n⇔a(b+n)<b(a+n)⇔ab+an<ab+bn⇔ab+an<ab+bn⇔a<b⇔a<b (vì n>0n>0).
Vậy ab<a+nb+n⇔a<b.ab<a+nb+n⇔a<b.
Tương tự
ab>a+nb+n⇔a>bab>a+nb+n⇔a>b ;
ab=a+nb+n⇔a=bab=a+nb+n⇔a=b.

8 tháng 9 2017

Nếu: m chẵn , n lẻ thì m + 2n + 1 chẵn => (m+2n+1)(3m-2n+2) chẵn (1)

Nếu: m lẻ , n chẵn thì m + 2n + 1 chẵn => (m+2n+1)(3m-2n+2) chẵn (2)

Nếu: m, n đều lẻ m + 2n + 1 chẵn => (m+2n+1)(3m-2n+2) chẵn (3)

Nếu: m,n đều chẵn 3m-2n+2 chẵn => (m+2n+1)(3m-2n+2) chẵn (4)

Từ (1),(2),(3),(4) suy ra với mọi m,n \(\in\) N thì A = (m+2n+1)(3m-2n+2) là số chẵn

3 tháng 7 2018

1.a) để A là số hữu tỉ thì 2n+3 nguyên và n - 1 khác 0

từ hai điều kiện trên suy ra n nguyên và n khác 1

b) để A nguyên thì 2n+3 ⋮ n - 1

⇒ 2(n - 1) +5 ⋮ n - 1

⇒ 5 ⋮ n - 1

⇒n ∈ {-4; 0; 2; 6}

2. x < y ⇔ \(\dfrac{a}{n}< \dfrac{b}{n}\)

\(\Rightarrow\dfrac{2a}{2n}< \dfrac{a+b}{2n}< \dfrac{2b}{2n}\Leftrightarrow x< z< y\)