Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(7a+3b\right)⋮23\Leftrightarrow17\left(7a+3b\right)⋮23\)(vì \(\left(17,23\right)=1\))
\(\Leftrightarrow\left(119a+51b\right)⋮23\Leftrightarrow\left(119a-5.23a+51-2.23b\right)⋮23\)
\(\Leftrightarrow\left(4a+5b\right)⋮23\)
Do ta biến đổi tương đương nên điều ngược lại cũng đúng.
\(S=3+3^2+3^3+...+3^{1998}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{1997}+3^{1998}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{1997}\left(1+3\right)\)
\(=4\left(3+3^3+...+3^{1997}\right)⋮2\)
\(S=3+3^2+3^3+...+3^{1998}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{1996}+3^{1997}+3^{1998}\right)\)
\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{1996}\left(1+3+3^2\right)\)
\(=13\left(3+3^4+...+3^{1996}\right)⋮13\).
Mà \(\left(2,13\right)=1\)nên \(S\)chia hết cho \(2.13=26\).
ta có: S = 3 + 3^2 + 3^3 + ...+3^1997 + 3^1998
S = (3 + 3^2 + 3^3) + (3^4+3^5+3^6) + ...+ ( 3^1996 + 3^1997 + 3^1998)
S = 3.(1+3+3^2) + 3^4.(1+3+3^2) + ...+ 3^1996.(1+3+3^2)
S = 3.13 + 3^4.13 + ...+ 3^1996.13
S = 13.(3 + 3^4 + 3^1996) chia hết cho 13 (1)
ta có: S = 3 + 3^2 + 3^3+...+3^1997+3^1998
S = (3+3^2) + (3^3+3^4) +...+(3^1997+3^1998)
S = 3.(1+3) + 3^3.(1+3)+...+3^1997.(1+3)
S = 3.4 +3^3.4 +...+3^1997.4
S = 4.(3+3^3 + ...+ 3^1997) chia hết cho 4
=> S chia hết cho 2 (2)
Từ (1);(2) => S chia hết cho 13.2 = 26
=> S chia hết cho 26
Ta có : S = 3 + 32 + 33 + ... + 31997 + 31998 .
=> S = ( 3 + 32 ) + ( 33 + 34 ) + ... + ( 31997 + 31998 ) .
=> S = 12 . ( 1 + 32 + 34 + ... + 31996 ) ⋮ 2 .
và S = 3 + 32 + 33 + ... + 31997 + 31998 .
=> S = ( 3 + 32 + 33 ) + ( 34 + 35 + 36 ) + ... + ( 31996 + 31997 + 31998 ) .
=> S = 39 . ( 1 + ... + 31995 ) ⋮ 13 .
Vì 16 = 13 . 2 và ( 2 , 13 ) = 1 nên S ⋮ 26 .
Vậy S ⋮ 26
4,Tìm a, b ∈N, biết:
a,10a+168=b2
b,100a+63=b2
c,2a+124=5b
d,2a+80=3b
Giải:
a) xét \(a=0\)
\(\Rightarrow10^a+168=1+168=169=13^2\)
\(\Rightarrow\hept{\begin{cases}a=0\\b=13\end{cases}}\)
xét \(a\ne0\)
=>10a có tận cùng bằng 0
Mà 10a+168 có tận cùng bằng 8 không phải số chính phương ( các số chính phương chỉ có thể tận cùng là:0;1;4;5;6;9 )
=>không có b
vậy \(\hept{\begin{cases}a=0\\b=13\end{cases}}\)
b)Chứng minh tương tự câu a)
c) \(5^b\)là số lẻ với b là số tự nhiên và tận cùng là 5
\(\Rightarrow2^a+124\)cũng là số lẻ và tận cùng là 5
Mà \(2^a+124\) là số lẻ khi và chỉ khi a=0
ta có :
2^0 + 124 = 5^b
=> 125 = 5^b
=> 5^3 = 5^b
=> b = 3
Vậy a = 0 ; b =3
d)Chứng minh tương tự như 2 câu mẫu trên
3,Cho B=34n+3+2013
Chứng minh rằng B⋮10 với mọi n∈N
Giải:
Ta có :
34n+3+2013
=(34)n+27+2013
=81n+2040
Phần sau dễ rồi ,mk nghĩ bạn có thể giải đc
\(a)\) \(S=3^0+3^2+3^4+3^6+...+3^{2002}\)
\(9S=3^2+3^4+3^6+3^8+...+3^{2004}\)
\(9S-S=\left(3^2+3^4+3^6+3^8+...+3^{2004}\right)-\left(3^0+3^2+3^4+3^6+...+3^{2002}\right)\)
\(8S=3^{2004}-3^0\)
\(8S=3^{2004}-1\)
\(S=\frac{3^{2004}-1}{8}\)
Vậy \(S=\frac{3^{2004}-1}{8}\)
a) \(S=3^0+3^2+3^4+3^6+....+3^{2002}\)
\(\Rightarrow3^2.S=3^2+3^4+3^6+3^8+....+3^{2004}\)
\(\Rightarrow9S-S=\left(3^2+3^4+3^6+3^8+....+3^{2004}\right)-\left(3^0+3^2+3^4+3^6+....+3^{2002}\right)\)
\(\Rightarrow8S=3^{2004}-1\)
\(\Rightarrow S=\frac{3^{2004}-1}{8}\)
Vậy \(S=\frac{3^{2004}-1}{8}\)
b) Ta có :
\(S=3^0+3^2+3^4+3^6+....+3^{2002}\)
Tổng \(S\)có số số hạng là :
( 2002 - 0 ) : 2 + 1 = 1002 ( số hạng )
Ta có : \(1002⋮3\)nên khi ta nhóm 3 số liên tiếp lại thành 1 nhóm thì sẽ không có số nào thừa cả
\(\Rightarrow S=\left(3^0+3^2+3^4\right)+\left(3^6+3^8+3^{10}\right)+....+\left(3^{1998}+3^{2000}+3^{2002}\right)\)
\(\Rightarrow S=3^0\left(1+3^2+3^4\right)+3^6\left(1+3^2+3^4\right)+....+3^{1998}\left(1+3^2+3^4\right)\)
\(\Rightarrow S=1.91+3^6.91+....+3^{1998}.91\)
\(\Rightarrow S=91.\left(1+3^6+....+3^{1998}\right)\)
Vì \(1+3^6+....+3^{1998}\inℤ\)nên \(91.\left(1+3^6+....+3^{1998}\right)\inℤ\)
Vì \(91⋮7\)nên \(91.\left(1+3^6+....+3^{1998}\right)⋮7\)
Vậy \(S=3^0+3^2+3^4+3^6+....+3^{2002}⋮7\left(ĐPCM\right)\)
1)
\(A=156+273+533+y\)
\(A=962+y\)
\(962⋮13\)
Để \(A⋮13\rightarrow y⋮13\)
\(A⋮̸13\rightarrow y⋮̸13\)
2)
\(A=1+3+3^2+...+3^{11}\)
* để A chia hết cho 13:
\(A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^9+3^{10}+3^{11}\right)\)
\(A=1\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^9\left(1+3+3^2\right)\)
\(A=\left(1+3^3+...+3^9\right)\left(1+3+3^2\right)\)
\(A=13\left(1+3^3+3^9\right)⋮13\rightarrowđpcm\)
* để A chia hết cho 40:
\(A=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(A=1\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+...+3^8\left(1+3+3^2+3^3\right)\)\(A=\left(1+3^4+...+3^8\right)\left(1+3+3^2+3^3\right)\)
\(A=40\left(1+3^4+...+3^8\right)⋮40\rightarrowđpcm\)
3)
\(25^{24}-25^{23}\)
\(=25^{23}.25-25^{23}.1\)
\(=25^{23}.\left(25-1\right)\)
\(=25^{23}.24\)
\(=25^{23}.4.6⋮6\rightarrowđpcm\)
4) Gọi 5 số tự nhiên liên tiếp đó là a;a+1;a+2;a+3;a+4
Tích của 5 số tự nhiên liên tiếp là :
\(a\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)\)
Ta có: \(a+1;a+3\) hoặc \(a+2;a+4\)là 2 số chẵn liên tiếp nên sẽ chia hết cho 8
5 số tự nhiên liên tiếp luôn có 1 số chia hết cho 5
a;a+1;a+2 luôn sẽ có 1 số chia hết cho 3
5 số tự nhiên liên tiếp đó chia hết cho 3;5;8
\(\Rightarrow⋮120\rightarrowđpcm\)