K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
7 tháng 11 2021

\(\left(7a+3b\right)⋮23\Leftrightarrow17\left(7a+3b\right)⋮23\)(vì \(\left(17,23\right)=1\))

\(\Leftrightarrow\left(119a+51b\right)⋮23\Leftrightarrow\left(119a-5.23a+51-2.23b\right)⋮23\)

\(\Leftrightarrow\left(4a+5b\right)⋮23\)

Do ta biến đổi tương đương nên điều ngược lại cũng đúng. 

DD
7 tháng 11 2021

\(S=3+3^2+3^3+...+3^{1998}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{1997}+3^{1998}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{1997}\left(1+3\right)\)

\(=4\left(3+3^3+...+3^{1997}\right)⋮2\)

\(S=3+3^2+3^3+...+3^{1998}\)

\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{1996}+3^{1997}+3^{1998}\right)\)

\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{1996}\left(1+3+3^2\right)\)

\(=13\left(3+3^4+...+3^{1996}\right)⋮13\).

Mà \(\left(2,13\right)=1\)nên \(S\)chia hết cho \(2.13=26\).

rat tiec,minh moi hoc lop 5.

21 tháng 7 2018

ta có: S = 3 + 3^2 + 3^3 + ...+3^1997 + 3^1998

S = (3 + 3^2 + 3^3) + (3^4+3^5+3^6) + ...+  ( 3^1996 + 3^1997 + 3^1998)

S = 3.(1+3+3^2) + 3^4.(1+3+3^2) + ...+ 3^1996.(1+3+3^2)

S = 3.13 + 3^4.13 + ...+ 3^1996.13

S = 13.(3 + 3^4 + 3^1996) chia hết cho 13 (1)

ta có: S = 3 + 3^2 + 3^3+...+3^1997+3^1998

S = (3+3^2) + (3^3+3^4) +...+(3^1997+3^1998)

S = 3.(1+3) + 3^3.(1+3)+...+3^1997.(1+3)

S = 3.4 +3^3.4 +...+3^1997.4

S = 4.(3+3^3 + ...+ 3^1997) chia hết cho 4

=> S chia hết cho 2 (2)

Từ (1);(2) => S chia hết cho 13.2 = 26

=> S chia hết cho 26

21 tháng 7 2018

Ta có : S = 3 + 32 + 33 + ... + 31997 + 31998 .

=>        S = ( 3 + 32 ) + ( 33 + 34 ) + ... + ( 31997 + 31998 ) .

=>        S = 12 . ( 1 + 32 + 34 + ... + 31996 ) ⋮ 2 .

và S = 3 + 32 + 33 + ... + 31997 + 31998 .

=> S = (  3 + 32 + 33 ) + ( 34 + 35 + 36 ) + ... + ( 31996 + 31997 + 31998 ) .

=> S = 39 . ( 1 + ... + 31995 ) ⋮ 13 .

Vì 16 = 13 . 2 và ( 2 , 13 ) = 1 nên S ⋮ 26 .

Vậy S  26

4,Tìm a, b N, biết:

a,10a+168=b2

b,100a+63=b2

c,2a+124=5b

d,2a+80=3b

 Giải:

a) xét \(a=0\)

\(\Rightarrow10^a+168=1+168=169=13^2\)

\(\Rightarrow\hept{\begin{cases}a=0\\b=13\end{cases}}\)

xét \(a\ne0\)

=>10a có tận cùng bằng 0

Mà 10a+168 có tận cùng bằng 8 không phải số chính phương ( các số chính phương chỉ có thể tận cùng là:0;1;4;5;6;9  )

=>không có b

vậy \(\hept{\begin{cases}a=0\\b=13\end{cases}}\)

b)Chứng minh tương tự câu a)

c) \(5^b\)là số lẻ với b là số tự nhiên và tận cùng là 5

\(\Rightarrow2^a+124\)cũng là số lẻ và tận cùng là 5

Mà \(2^a+124\) là số lẻ khi và chỉ khi a=0

ta có :

2^0 + 124 = 5^b

=> 125 = 5^b

=> 5^3 = 5^b

=> b = 3

Vậy a = 0 ; b =3

d)Chứng minh tương tự như 2 câu mẫu trên

3,Cho B=34n+3+2013

Chứng minh rằng B10 với mọi nN

Giải:

Ta có : 

34n+3+2013

=(34)n+27+2013

=81n+2040

Phần sau dễ rồi ,mk nghĩ bạn có thể giải đc

5 tháng 3 2018

\(a)\) \(S=3^0+3^2+3^4+3^6+...+3^{2002}\)

\(9S=3^2+3^4+3^6+3^8+...+3^{2004}\)

\(9S-S=\left(3^2+3^4+3^6+3^8+...+3^{2004}\right)-\left(3^0+3^2+3^4+3^6+...+3^{2002}\right)\)

\(8S=3^{2004}-3^0\)

\(8S=3^{2004}-1\)

\(S=\frac{3^{2004}-1}{8}\)

Vậy \(S=\frac{3^{2004}-1}{8}\)

5 tháng 3 2018

a) \(S=3^0+3^2+3^4+3^6+....+3^{2002}\)

\(\Rightarrow3^2.S=3^2+3^4+3^6+3^8+....+3^{2004}\)

\(\Rightarrow9S-S=\left(3^2+3^4+3^6+3^8+....+3^{2004}\right)-\left(3^0+3^2+3^4+3^6+....+3^{2002}\right)\)

\(\Rightarrow8S=3^{2004}-1\)

\(\Rightarrow S=\frac{3^{2004}-1}{8}\)

Vậy \(S=\frac{3^{2004}-1}{8}\)

b) Ta có :

\(S=3^0+3^2+3^4+3^6+....+3^{2002}\)

Tổng \(S\)có số số hạng là :

( 2002 - 0 ) : 2 + 1 = 1002 ( số hạng )

Ta có : \(1002⋮3\)nên khi ta nhóm 3 số liên tiếp lại thành 1 nhóm thì sẽ không có số nào thừa cả 

\(\Rightarrow S=\left(3^0+3^2+3^4\right)+\left(3^6+3^8+3^{10}\right)+....+\left(3^{1998}+3^{2000}+3^{2002}\right)\)

\(\Rightarrow S=3^0\left(1+3^2+3^4\right)+3^6\left(1+3^2+3^4\right)+....+3^{1998}\left(1+3^2+3^4\right)\)

\(\Rightarrow S=1.91+3^6.91+....+3^{1998}.91\)

\(\Rightarrow S=91.\left(1+3^6+....+3^{1998}\right)\)

Vì \(1+3^6+....+3^{1998}\inℤ\)nên \(91.\left(1+3^6+....+3^{1998}\right)\inℤ\)

Vì \(91⋮7\)nên \(91.\left(1+3^6+....+3^{1998}\right)⋮7\)

Vậy \(S=3^0+3^2+3^4+3^6+....+3^{2002}⋮7\left(ĐPCM\right)\)

19 tháng 7 2017

1)

\(A=156+273+533+y\)

\(A=962+y\)

\(962⋮13\)

Để \(A⋮13\rightarrow y⋮13\)

\(A⋮̸13\rightarrow y⋮̸13\)

2)

\(A=1+3+3^2+...+3^{11}\)

* để A chia hết cho 13:

\(A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^9+3^{10}+3^{11}\right)\)

\(A=1\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^9\left(1+3+3^2\right)\)

\(A=\left(1+3^3+...+3^9\right)\left(1+3+3^2\right)\)

\(A=13\left(1+3^3+3^9\right)⋮13\rightarrowđpcm\)

* để A chia hết cho 40:

\(A=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^8+3^9+3^{10}+3^{11}\right)\)

\(A=1\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+...+3^8\left(1+3+3^2+3^3\right)\)\(A=\left(1+3^4+...+3^8\right)\left(1+3+3^2+3^3\right)\)

\(A=40\left(1+3^4+...+3^8\right)⋮40\rightarrowđpcm\)

3)

\(25^{24}-25^{23}\)

\(=25^{23}.25-25^{23}.1\)

\(=25^{23}.\left(25-1\right)\)

\(=25^{23}.24\)

\(=25^{23}.4.6⋮6\rightarrowđpcm\)

4) Gọi 5 số tự nhiên liên tiếp đó là a;a+1;a+2;a+3;a+4

Tích của 5 số tự nhiên liên tiếp là :

\(a\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)\)

Ta có: \(a+1;a+3\) hoặc \(a+2;a+4\)là 2 số chẵn liên tiếp nên sẽ chia hết cho 8

5 số tự nhiên liên tiếp luôn có 1 số chia hết cho 5

a;a+1;a+2 luôn sẽ có 1 số chia hết cho 3

5 số tự nhiên liên tiếp đó chia hết cho 3;5;8

\(\Rightarrow⋮120\rightarrowđpcm\)

18 tháng 7 2017

khó quábucminhkhocroi