K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2017

tìm GTLN nha mik QuÊn

3 tháng 10 2016

de qua

6 tháng 8 2018

x.(2.x-1)+1/3-2/3.x=0

5 tháng 7 2018

1) a) \(\left(3x-1\right)\left(9x^2+3x+1\right)-4x\left(x-5\right)\)

\(=27x^3+9x^2+3x-9x^2-3x-1-4x^2+20x\)

\(=27x^3+\left(9x^2-9x^2-4x^2\right)+\left(3x-3x+20x\right)+\left(-1\right)\)

\(=27x^3-4x^2+20x-1\)

b)\(\left(7x+2\right)\left(3-4x\right)-\left(x+3\right)\left(x^2-3x+9\right)\)

\(=21x-28x^2+6-8x-x^3+3x^2-9x-3x^2+9x-27\)

\(=\left(21x-8x-9x+9x\right)+\left(-28x^2+3x^2-3x^2\right)\)\(+\left(6-27\right)\)\(+\left(-x^3\right)\)

\(=13x-28x^2-21-x^3\)

c)\(\left(4x+3\right)\left(4x-3\right)-\left(2-x\right)\left(4+2x+x^2\right)\)

\(=16x^2-12x+12x-9-8-4x-2x^2+4x+2x^2+x^3\)

\(=\left(16x^2-2x^2+2x^2\right)+\left(-12x+12x-4x+4x\right)\)\(+\left(-9-8\right)\)\(+x^3\)

\(=16x^2-17+x^3\)

d)\(\left(3x-8\right)\left(-5x+6\right)-\left(4x+1\right)\left(3x-2\right)\)

\(=-15x^2+18x+40x-48-12x^2+8x-3x+2\)

\(=\left(-15x^2-12x^2\right)+\left(18x+40x+8x-3x\right)\)\(+\left(-48+2\right)\)

\(=-27x^2+63x-46\)

e)\(\left(3x-6\right)4x-2x\left(3x+5\right)-4x^2\)

\(=12x^2-24x-6x^2-10x-4x^2\)

\(=\left(12x^2-6x^2-4x^2\right)+\left(-24x-10x\right)\)

\(=2x^2-34x\)

f)\(\left(5x-6\right)\left(6x-5\right)-x\left(3x+10\right)\)

\(=30x^2-25x-36x+30-3x^2-10x\)

\(=\left(30x^2-3x^2\right)+\left(-25x-36x-10x\right)+30\)

\(=27x^2-71x+30\)

5 tháng 7 2018

2) a)\(x\left(x+3\right)-x^2=6\)

\(\Rightarrow x^2+3x-x^2=6\)

\(\Rightarrow\left(x^2-x^2\right)+3x=6\)

\(\Rightarrow3x=6\)

\(\Rightarrow x=2\)

Vậy x=2

b) \(2x\left(x-5\right)+x\left(-2x-1\right)=6\)

\(\Rightarrow2x^2-10x-2x^2-x=6\)

\(\Rightarrow\left(2x^2-2x^2\right)+\left(-10x-x\right)=6\)

\(\Rightarrow-11x=6\)

\(\Rightarrow x=-\dfrac{6}{11}\)

\(\)Vậy \(x=-\dfrac{6}{11}\)

c) x(x+5)-(x+1)(x-2)=7

\(\Rightarrow x^2+5x-x^2+2x-x+2=7\)

\(\Rightarrow\left(x^2-x^2\right)+\left(5x+2x-x\right)=7-2\)

\(\Rightarrow6x=5\)

\(\Rightarrow x=\dfrac{5}{6}\)

Vậy x=\(\dfrac{5}{6}\)

d)\(\left(3x+4\right)\left(6x-3\right)-\left(2x+1\right)\left(9x-2\right)=10\)

\(\Rightarrow18x^2-9x+24x-12-18x^2+4x-9x+2=10\)

\(\Rightarrow\left(18x^2-18x^2\right)+\left(-9x+24x+4x-9x\right)+\left(-12+2\right)=10\)

\(\Rightarrow10x-10=10\)

\(\Rightarrow10x=20\)

\(\Rightarrow x=2\)

Vậy x=2

23 tháng 7 2017

a/ \(\left(x-2\right)\left(3x+1\right)-2x=3x\left(x+2\right)\)

\(\Leftrightarrow3x^2+x-6x-2-2x=3x^2+6x\)

\(\Leftrightarrow3x^2+x-6x-2x-3x^2-6x=2\)

\(\Leftrightarrow-13x=2\Leftrightarrow x=-\dfrac{2}{13}\)

b/ \(\left(5-2x\right)\left(3x+1\right)+6x\left(x-1\right)=0\)

\(\Leftrightarrow15x+5-6x^2-2x+6x^2-6x=0\)

\(\Leftrightarrow7x=-5\Leftrightarrow x=-\dfrac{5}{7}\)

c,d tương tự ý a

a) Ta có: \(\left(2x+3\right)^2-\left(5+x\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left(2x+3\right)\left(2x+3+5+x\right)=0\)

\(\Leftrightarrow\left(2x+3\right)\left(3x+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\3x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-3\\3x=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-3}{2}\\x=\frac{-8}{3}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{-3}{2};\frac{-8}{3}\right\}\)

b) Ta có: \(\left(2x+5\right)^2-\left(2x-5\right)^2=6x+8\)

\(\Leftrightarrow\left(2x+5+2x-5\right)\left(2x+5-2x+5\right)-6x-8=0\)

\(\Leftrightarrow40x-6x-8=0\)

\(\Leftrightarrow34x=8\)

\(\Leftrightarrow x=\frac{8}{34}=\frac{4}{17}\)

Vậy: \(x=\frac{4}{17}\)

c) Ta có: \(\left(4x+3\right)^2=4\left(x-1\right)^2\)

\(\Leftrightarrow16x^2+24x+9=4\left(x^2-2x+1\right)\)

\(\Leftrightarrow16x^2+24x+9-4x^2+8x-4=0\)

\(\Leftrightarrow12x^2+32x+5=0\)

\(\Leftrightarrow12x^2+2x+30x+5=0\)

\(\Leftrightarrow2x\left(6x+1\right)+5\left(6x+1\right)=0\)

\(\Leftrightarrow\left(6x+1\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}6x+1=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}6x=-1\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{6}\\x=\frac{-5}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{-1}{6};\frac{-5}{2}\right\}\)

d) Ta có: \(\left(7x-1\right)\left(3x-2\right)-49x^2+14x=1\)

\(\Leftrightarrow\left(7x-1\right)\left(3x-2\right)-\left(49x^2-14x+1\right)=0\)

\(\Leftrightarrow\left(7x-1\right)\left(3x-2\right)-\left(7x-1\right)^2=0\)

\(\Leftrightarrow\left(7x-1\right)\left[3x-2-\left(7x-1\right)\right]=0\)

\(\Leftrightarrow\left(7x-1\right)\left(3x-2-7x+1\right)=0\)

\(\Leftrightarrow\left(7x-1\right)\left(-4x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}7x-1=0\\-4x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}7x=1\\-4x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{7}\\x=\frac{-1}{4}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{1}{7};\frac{-1}{4}\right\}\)

19 tháng 10 2017

\(a,x^3+3x^2=4x+12\)

\(x^2\left(x+3\right)=4\left(x+3\right)\)

\(\Rightarrow\left(x+3\right)\left(x^2-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+3=0\\x^2-4=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-3\\x=\pm2\end{cases}}\)

\(b,49x^2=\left(3x+2\right)^2\)

\(7x=3x+2\)

\(\Rightarrow7x-3x=2\)

\(\Rightarrow4x=2\)

\(\Rightarrow x=\frac{1}{2}\)

các câu còn lại tương tự nha

19 tháng 10 2017

\(a,x^3+3x^2=4x+12\)

\(x^3+3x^2-4x-12=0\)

\(\Rightarrow x^2\left(x+3\right)-4\left(x+3\right)=0\)

\(\Rightarrow\left(x+3\right)\left(x^2-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+3=0\\\left(x+2\right)\left(x-2\right)=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-3\\x=\pm2\end{cases}}\)

\(b,49x^2=\left(3x+2\right)^2\)

\(\Rightarrow\left(7x\right)^2=\left(3x+2\right)^2\)

\(\Rightarrow7x=3x+2\)

\(\Rightarrow7x-3x=2\)

\(\Rightarrow4x=2\)

\(\Rightarrow x=\frac{1}{2}\)

\(c,3x^2\left(x-5\right)+12\left(5-x\right)=0\)

\(3x^2\left(x-5\right)-12\left(x-5\right)=0\)

\(\left(x-5\right)\left(3x^2-12\right)=0\)

\(\Rightarrow3.\left(x-5\right)\left(x^2-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\x^2-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=\pm2\end{cases}}}\)

\(d,x^2\left(x-5\right)+45-9x=0\)

\(x^2\left(x-5\right)+9\left(5-x\right)=0\)

\(x^2\left(x-5\right)-9\left(x-5\right)=0\)

\(\left(x-5\right)\left(x^2-9\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\x^2-9=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=5\\x=\pm3\end{cases}}\)

2 tháng 8 2019

a) \(x^2-36=0\)

\(\Leftrightarrow x^2=36\)

\(\Leftrightarrow x=\pm\sqrt{36}=\pm6\)

2 tháng 8 2019

b) \(\left(3x-5\right)^2-\left(x+6\right)^2=0\)

\(\Leftrightarrow\left(3x-5-x-6\right)\left(3x-5+x+6\right)=0\)

\(\Leftrightarrow\left(2x-11\right)\left(4x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{11}{2}\\x=\frac{-1}{4}\end{cases}}\)