K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2017

mình chỉ viết đáp án thôi nhé! còn nếu ý nào bạn cần lời giải chi tiết mình sẽ giải cho!

a) S= { -2/3;-3/2}

b) S= {-5;1}

c) S= {-1/2;1}

d) S= {3/7;4}

e) S= {3;5}

NHỚ BẤM ĐÚNG CHO MÌNH NHÉ!

29 tháng 1 2017

cho mk lời giải chi tiết đi

18 tháng 7 2017

a) \(\left(4x-1\right)^2-\left(3x+2\right)\left(3x-2\right)=\left(7x-1\right)\left(x+2\right)+\left(2x+1\right)^2-\left(4x^2+7\right)\)(1)

\(\Leftrightarrow\left(16x^2-8x+1\right)-\left(9x^2-4\right)=\left(7x^2+14x-x-2\right)+\left(4x^2+4x+1\right)-\left(4x^2+7\right)\)

\(\Leftrightarrow16x^2-8x+1-9x^2+4=7x^2+13x-2+4x^2+4x+1-4x^2-7\)

\(\Leftrightarrow7x^2-8x+5=7x^2+17x-8\)

\(\Leftrightarrow7x^2-8x-7x^2-17x=-8-5\)

\(\Leftrightarrow-25x=-13\)

\(\Leftrightarrow x=\dfrac{13}{25}\)

Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{13}{25}\right\}\)

18 tháng 7 2017

gắp cái gì

a: \(\Leftrightarrow\left(3x+2\right)\left(5-x\right)=-9x^2+4\)

\(\Leftrightarrow\left(3x+2\right)\left(5-x\right)+\left(3x+2\right)\left(3x-2\right)=0\)

\(\Leftrightarrow\left(3x+2\right)\left(2x+3\right)=0\)

=>x=-2/3 hoặc x=-3/2

b: \(\Leftrightarrow4x\left(x+5\right)+x^2-25=0\)

\(\Leftrightarrow\left(x+5\right)\left(5x-5\right)=0\)

=>x=-5 hoặc x=1

c: \(\Leftrightarrow3x\left(x-1\right)=\left(x-1\right)^2\)

\(\Leftrightarrow\left(x-1\right)\left(2x+1\right)=0\)

=>x=1 hoặc x=-1/2

23 tháng 3 2020

cái này có vội không? nếu không thì sáng mai mình giải cho bạn?

23 tháng 3 2020

Hoàng Ngọc Anh: chắc không cần đâu bạn, có thằng kia nhờ mình đăng hộ ý mà! Mà bạn cũng trả lời câu hỏi này rồi đó! :)

18 tháng 8 2016

\(\left(8x^3-60x^2+150x-125\right)-\left(27x^3-108x^2+144x-64\right)+\left(x^3+3x^2+3x+1\right)=0\)

\(-18x^3+51x^2+9x-60=0\)

\(\left(2x-5\right)\left(x+1\right)\left(3x-4\right)=0\)

\(\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-1\\x=\frac{4}{3}\end{array}\right.\)

11 tháng 7 2019

â) \(\left(5-x\right)\left(2+3x\right)=4-9x^2\) 

   \(\left(5-x\right)\left(2+3x\right)=\left(2+3x\right)\left(2-3x\right)\)

   \(5-x=2-3x\) 

  \(2x=-3\) 

 \(x=\frac{-3}{2}\) 

Vậy ......

b) \(25-x^2=4x\left(5+x\right)\)

    \(\left(5+x\right)\left(5-x\right)=4x\left(5+x\right)\) 

   \(5-x=4x\) 

   \(5x=5\)

  x=1

Vậy......

11 tháng 7 2019

a) \(\left(5-x\right)\left(2+3x\right)=4-9x^2\)

<=> \(\left(5-x\right)\left(2+3x\right)+9x^2-4=0\)

<=> \(\left(5-x\right)\left(2+3x\right)+\left(3x-2\right)\left(3x+2\right)=0\)

<=> \(\left(2+3x\right)\left(3x-2+5-x\right)=0\)

<=> \(\left(2+3x\right)\left(2x+3\right)=0\)

<=> \(\orbr{\begin{cases}2x+3=0\\3x+2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{3}{2}\\x=-\frac{2}{3}\end{cases}}\)

b) \(25-x^2=4x\left(5+x\right)\)

<=> \(25-x^2-4x\left(5+x\right)=0\)

<=> \(\left(5-x\right)\left(5+x\right)-4x\left(5+x\right)=0\)

<=> \(\left(5+x\right)\left(5-x-4x\right)=0\)

<=> \(\left(5+x\right)\left(5-5x\right)=0\)

<=> \(\orbr{\begin{cases}5+x=0\\5-5x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-5\\x=1\end{cases}}\)

22 tháng 4 2020

d, (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0

Đặt x2 + 4x + 8 = t ta được:

t2 + 3xt + 2x2 = 0

\(\Leftrightarrow\) t2 + xt + 2xt + 2x2 = 0

\(\Leftrightarrow\) t(t + x) + 2x(t + x) = 0

\(\Leftrightarrow\) (t + x)(t + 2x) = 0

Thay t = x2 + 4x + 8 ta được:

(x2 + 4x + 8 + x)(x2 + 4x + 8 + 2x) = 0

\(\Leftrightarrow\) (x2 + 5x + 8)[x(x + 4) + 2(x + 4)] = 0

\(\Leftrightarrow\) (x2 + 5x + \(\frac{25}{4}\) + \(\frac{7}{4}\))(x + 4)(x + 2) = 0

\(\Leftrightarrow\) [(x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\)](x + 4)(x + 2) = 0

Vì (x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\) > 0 với mọi x

\(\Rightarrow\left[{}\begin{matrix}x+4=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-2\end{matrix}\right.\)

Vậy S = {-4; -2}

Mình giúp bn phần khó thôi!

Chúc bn học tốt!!

22 tháng 4 2020

c) \(\frac{1}{x-1}\)+\(\frac{2x^2-5}{x^3-1}\)=\(\frac{4}{x^2+x+1}\) (ĐKXĐ:x≠1)

\(\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)+\(\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}\)=\(\frac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

⇒x2+x+1+2x2-5=4x-4

⇔3x2-3x=0

⇔3x(x-1)=0

⇔x=0 (TMĐK) hoặc x=1 (loại)

Vậy tập nghiệm của phương trình đã cho là:S={0}