Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Phương pháp 1: ( Hình 1)
Nếu thì ba điểm A; B; C thẳng hàng.
2. Phương pháp 2: ( Hình 2)
Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.
(Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)
3. Phương pháp 3: ( Hình 3)
Nếu AB a ; AC A thì ba điểm A; B; C thẳng hàng.
( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng
a’ đi qua điểm O và vuông góc với đường thẳng a cho trước
- tiết 3 hình học 7)
Hoặc A; B; C cùng thuộc một đường trung trực của một
đoạn thẳng .(tiết 3- hình 7)
4. Phương pháp 4: ( Hình 4)
Nếu tia OA và tia OB là hai tia phân giác của góc xOy
thì ba điểm O; A; B thẳng hàng.
Cơ sở của phương pháp này là:
Mỗi góc có một và chỉ một tia phân giác .
* Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,
thì ba điểm O, A, B thẳng hàng.
5. Nếu K là trung điểm BD, K’ là giao điểm của BD và AC. Nếu K’
Là trung điểm BD thì K’ K thì A, K, C thẳng hàng.
(Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)
C. Các ví dụ minh họa cho tùng phương pháp:
Phương pháp 1
Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA
(tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm
D sao cho CD = AB.
Chứng minh ba điểm B, M, D thẳng hàng.
Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh
Do nên cần chứng minh
BÀI GIẢI:
AMB và CMD có:
AB = DC (gt).
MA = MC (M là trung điểm AC)
Do đó: AMB = CMD (c.g.c). Suy ra:
Mà (kề bù) nên .
Vậy ba điểm B; M; D thẳng hàng.
Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối
tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED
sao cho CM = EN.
Chứng minh ba điểm M; A; N thẳng hàng.
Gợi ý: Chứng minh từ đó suy ra ba điểm M; A; N thẳng hàng.
BÀI GIẢI (Sơ lược)
ABC = ADE (c.g.c)
ACM = AEN (c.g.c)
Mà (vì ba điểm E; A; C thẳng hàng) nên
Vậy ba điểm M; A; N thẳng hàng (đpcm)
BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối
của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và
CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx BC (tia Cx và điểm A ở
phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia
BC lấy điểm F sao cho BF = BA.
Chứng minh ba điểm E, A, F thẳng hàng.
Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm
E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)
Gọi M là trung điểm HK.
Chứng minh ba điểm D, M, E thẳng hàng.
Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ
Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),
trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.
Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.
Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các
đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.
Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.
PHƯƠNG PHÁP 2
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên
Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung
điểm BD và N là trung điểm EC.
Chứng minh ba điểm E, A, D thẳng hàng.
Hướng dẫn: Xử dụng phương pháp 2
Ta chứng minh AD // BC và AE // BC.
BÀI GIẢI.
BMC và DMA có:
MC = MA (do M là trung điểm AC)
(hai góc đối đỉnh)
MB = MD (do M là trung điểm BD)
Vậy: BMC = DMA (c.g.c)
Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)
Chứng minh tương tự : BC // AE (2)
Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)
và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng.
Ví dụ 2: Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia
AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho
D là trung điểm AN.
a) A = \(9\frac{3}{8}-\left(2\frac{3}{5}+2\frac{3}{8}\right)=9\frac{3}{8}-2\frac{3}{5}-2\frac{3}{8}=\left(9\frac{3}{8}-2\frac{3}{8}\right)-2\frac{3}{5}=7-\frac{13}{5}=\frac{22}{5}\)
b) B = \(\left(15\frac{3}{5}+5\frac{3}{4}\right)-8\frac{3}{5}=15\frac{3}{5}+5\frac{3}{4}-8\frac{3}{5}=\left(15\frac{3}{5}-8\frac{3}{5}\right)+5\frac{3}{4}=7+\frac{23}{4}=\frac{51}{4}\)
c) C = \(17\frac{1}{4}-\left(2\frac{3}{7}+7\frac{1}{4}\right)=17\frac{1}{4}-2\frac{3}{7}-7\frac{1}{4}=\left(17\frac{1}{4}-7\frac{1}{4}\right)-2\frac{3}{7}=10-\frac{17}{7}=\frac{53}{7}\)
d) D = \(\left(11\frac{5}{17}+3\frac{5}{7}\right)-4\frac{5}{17}=11\frac{5}{17}+3\frac{5}{7}-4\frac{5}{17}=\left(11\frac{5}{17}-4\frac{5}{17}\right)+3\frac{5}{7}=7+\frac{26}{7}=\frac{75}{7}\)
a) \(\frac{2}{3}-4.\left(\frac{1}{2}+\frac{3}{4}\right)\)
= \(\frac{2}{3}-4.\frac{5}{4}\)
= \(\frac{2}{3}-5\)
= \(-\frac{13}{3}\).
b) Câu này là 117 hay \(\frac{11}{7}\) vậy bạn?
Chúc bạn học tốt!
1/ a/\(-\frac{7}{18}=\left(-\frac{7}{2}\right)\left(\frac{1}{9}\right)\)
b/\(-\frac{7}{18}=\left(-\frac{7}{9}\right):2\)
2/
a/\(\frac{7}{15}\cdot\left(-\frac{3}{8}-\frac{3}{7}\right)=\frac{7}{15}\cdot\left(-\frac{45}{56}\right)=-\frac{3}{8}\)
b/\(\left(-\frac{3}{4}+\frac{2}{5}\right):\frac{3}{7}+\left(\frac{3}{5}+-\frac{4}{4}\right):\frac{3}{7}\)
\(=\left(-\frac{7}{20}\right):\frac{3}{7}+\left(-\frac{2}{5}\right):\frac{3}{7}\)
\(=\left(-\frac{49}{60}\right)+\left(-\frac{14}{15}\right)=-\frac{7}{4}\)
c/\(\frac{2}{3}\cdot\left(-\frac{5}{2}\right)+\frac{10}{15}\cdot\left(-\frac{3}{7}\right)-\frac{2}{3}\cdot\left(-\frac{5}{3}\right)\)
\(=\frac{2}{3}\cdot\left(-\frac{5}{2}-\frac{3}{7}+\frac{5}{3}\right)=-\frac{53}{63}\)
3/
\(2-\left(3-x\right)=-\frac{3}{2}\)
\(2-3+x=-\frac{3}{2}\)
\(x=-\frac{3}{2}+3-2=-\frac{1}{2}\)
4/
a/ Ta có 2 trường hợp:
TH1: \(x-3,5=7,5\)
\(x=7,5+3,5=11\)
TH2: \(x-3,5=-7,5\)
\(x=-7,5+3,5=-4\)
b/ Ta có 2 trường hợp:
TH1:\(x-0,4=3,6\)
\(x=4\)
TH2: \(x-0,4=-3,6\)
\(x=-3.2\)
c/ Ta có 2 trường hợp:
TH1:\(x+\frac{4}{5}=\frac{3}{2}\)
\(x=\frac{7}{10}\)
TH2:\(x+\frac{4}{5}=-\frac{3}{2}\)
\(x=-\frac{32}{10}\)
\(a,\left(\frac{3}{8}+-\frac{3}{4}+\frac{7}{12}\right):\frac{5}{6}+\frac{1}{2}\)
= \(\left(-\frac{3}{8}+\frac{7}{12}\right):\frac{5}{6}+\frac{1}{2}\)
= \(\frac{5}{24}:\frac{5}{6}+\frac{1}{2}\)
= \(\frac{1}{4}+\frac{1}{2}\)
= \(\frac{3}{4}\)
b)\(-\frac{7}{3}.\frac{5}{9}+\frac{4}{9}.\left(-\frac{3}{7}\right)+\frac{17}{7}\)
=\(-\frac{35}{27}+\left(-\frac{4}{21}\right)+\frac{17}{7}\)
= \(-\frac{35}{27}+\frac{47}{21}\)
= \(\frac{178}{189}\)
c) \(\frac{117}{13}-\left(\frac{2}{5}+\frac{57}{13}\right)\)
= \(\frac{117}{13}-\frac{311}{65}\)
= \(\frac{274}{65}\)
d) \(\frac{2}{3}-0,25:\frac{3}{4}+\frac{5}{8}.4\)
= \(\frac{2}{3}-\frac{1}{4}:\frac{3}{4}+\frac{5}{8}.4\)
= \(\frac{2}{3}-\frac{1}{3}+\frac{5}{2}\)
= \(\frac{1}{3}+\frac{5}{2}\)
= \(\frac{17}{6}\)
a,\(3:7+\left(-5:2\right)+\left(-3:5\right)\)
\(=\dfrac{3}{7}-\dfrac{5}{2}-\dfrac{3}{5}\)
\(=-\dfrac{187}{70}\)
b,\(-8:18-15:17\)
\(=-\dfrac{8}{18}-\dfrac{15}{17}\)
\(=-\dfrac{203}{153}\)
c,\(4:5-\left(-2:7\right)-7:10\)
\(=\dfrac{4}{5}-\left(-\dfrac{2}{7}\right)-\dfrac{7}{10}\)
\(=\dfrac{27}{10}\)
d,\(3,5-\left(-2:7\right)\)
\(=3,5+\dfrac{2}{7}\)
\(=\dfrac{53}{14}\)