Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: \(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^9}=1\)
mà \(1+3+3^2+...+3^9>1+3+3^2+...+3^8\)
\(\Rightarrow B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}>1\)
\(\Rightarrow A< B\)
Câu hỏi của nguyen van nam - Toán lớp 6 - Học toán với OnlineMath
A=1+5+5^2+..+5^9/1+5+5^2+...+5^8
=1+5^9/1+5+5^2+...+5^8
B=1+3+3^2+..+3^9/1+3+3^2+..+3^8
=1+3^9/1+3+3^2+..+3^8
đặt A' =1+5+5^2+...+5^8
5A'=5+5^2+5^3+...+5^9
5A'-A'=5+5^2+5^3+...+5^9-5-1-5-5^2-...-5^8
4A'=5^9-1=>A'=(5^9-1):4
tương tự B'=(3^9-1):4
A=1+5^9/(5^9-1)/4=4.5^9/5^9-1
B=1+3^9/(3^9-1)/4=4.3^9/3^9-1
=> A<B
\(a^3.a^9=a^{12};\left(a^5\right)^7=a^{35}\)
\(\left(a^6\right)^4.a^{12}=a^{24}.a^{12}=a^{36};5^6:5^4-3^3:3^2=25-3=22\)
\(4.5^2-2^5.3^0=100-32=68\)
1)
a)
\(\dfrac{-5}{11}\cdot\dfrac{4}{7}+\dfrac{-5}{11}\cdot\dfrac{3}{7}-\dfrac{8}{11}\\ =\dfrac{-5}{11}\cdot\left(\dfrac{4}{7}+\dfrac{3}{7}\right)-\dfrac{8}{11}\\ =\dfrac{-5}{11}\cdot1-\dfrac{8}{11}\\ =\dfrac{-5}{11}-\dfrac{8}{11}\\ =\dfrac{-5}{11}+\dfrac{-8}{11}\\ =\dfrac{-13}{11}\)
b)
\(\left(\dfrac{2}{9}:\dfrac{5}{3}+\dfrac{1}{3}:\dfrac{5}{3}\right)^2-\left(\dfrac{1}{3}-\dfrac{5}{8}\right)\\ =\left(\dfrac{2}{9}\cdot\dfrac{3}{5}+\dfrac{1}{3}\cdot\dfrac{3}{5}\right)^2-\left(\dfrac{-7}{24}\right)\\ =\left[\dfrac{3}{5}\cdot\left(\dfrac{2}{9}+\dfrac{1}{3}\right)\right]^2+\dfrac{7}{24}\\ =\left[\dfrac{3}{5}\cdot\dfrac{5}{9}\right]^2+\dfrac{7}{24}\\ =\left[\dfrac{1}{3}\right]^2+\dfrac{7}{24}\\ =\dfrac{1}{9}+\dfrac{7}{24}\\ =\dfrac{29}{72}\)
c) \(14-\left|\dfrac{-3}{4}\right|-\left(\dfrac{1}{3}-\dfrac{5}{8}\right)\\ =14-\dfrac{3}{4}-\left(\dfrac{-7}{24}\right)\\ =14+\dfrac{-3}{4}+\dfrac{7}{24}\\ =13\dfrac{13}{24}\)
\(A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(A=1-\frac{1}{101}\)
\(A=\frac{100}{101}\)
\(B=\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)
\(B=\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)
\(B=\frac{5}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(B=\frac{5}{2}.\left(1-\frac{1}{101}\right)\)
\(B=\frac{5}{2}.\frac{100}{101}\)
\(B=\frac{250}{101}\)
Xin chào bạn, bài này giải như sau:
\(3A=3^2+3^3+...+3^{51} \)
\(3A-A=\left(3^2+3^3+...+3^{51}\right)-\left(3+3^2+...+3^{50}\right)\)
\(2A=3^{51}-3\Leftrightarrow A=\frac{3^{51}-3}{2}\)
\(5B=5^2+5^3+...+5^{101}\)
\(5B-B=\left(5^2+5^3+...+5^{101}\right)-\left(5+5^2+...+5^{100}\right)\)
\(4B=5^{101}-5\Leftrightarrow B=\frac{5^{101}-5}{4}\)
\(5^n=4B+5=5^{101}-5+5=5^{101}\Rightarrow n=101\)
\(3^n=2A+3=3^{51}-3+3=3^{51}\Rightarrow n=51\)
Chúc bạn học tốt!
Bạn chịu khó k giùm mình
A=-3/5+(-2/5+2)=-3/5+8/5=1
HT
k cho mình nha
@@@@@@@@@@@@@@@@@@@@