Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{9^x}{3^{x+9}}=27\)
\(\Leftrightarrow3^{2x}=3^{x+9}\cdot3^3\)
\(\Leftrightarrow3^{2x}=3^{x+12}\)
\(\Rightarrow2x=x+12\)
\(\Rightarrow x=12\)
Thay vào: \(\frac{4^{12+y}}{2^{5y}}=32\)
\(\Leftrightarrow2^{2y+24}=2^{5y}\cdot2^5\)
\(\Leftrightarrow2^{2y+24}=2^{5y+5}\)
\(\Rightarrow2y+24=5y+5\)
\(\Leftrightarrow3y=19\)
\(\Rightarrow y=\frac{19}{3}\)
Vậy \(\hept{\begin{cases}x=12\\y=\frac{19}{3}\end{cases}}\)
a, A= 5x415 x 99 - 4x320x 89 = 5x230x318-22x 227x320
=229x318(2x5-32)=229x318
B=5x29x619-7x229x276=5x29x219x3197x229x318
=238x318(5x3-7x2)=228-318
->A:B= 229x318:228:318=2
c) 23 . 84 và 323
23 . 84 = 23 . ( 23)4 = 23 . 212 = 215
323 = ( 25)3 = 215
\(\Rightarrow\) 23 . 84 = 323
d) 274 . 92 và 310
274 . 92 = ( 33)4 . ( 32)2 = 312 . 34 = 316
310
\(\Rightarrow\) 274 . 92 > 310
Tôi biết làm rồi, tôi hỏi để xem tôi có đúng với kết quả của các bạn không ?
A=5.415.99-4.320.89=5.230.318-22.227.320
=229.318(2.5-32)=229.318
B=5.29.619-7.229.276=5.29.219.319-7.229.318
=228.318(5.3-7.2)=228.318
=>A:B=229.318:228:318=2
a) \(\frac{18^4.3^2.8^3}{27^3.16^2}=\frac{\left(2.3^2\right)^4.3^2.\left(2^3\right)^3}{\left(3^3\right)^3.\left(2^4\right)^2}=\frac{2^4.2^9.3^8.3^2}{3^9.2^8}=\frac{2^{13}.3^{10}}{3^9.2^8}=3.2^5=96\)
b) \(\frac{35^5.9^3.8^5}{81^4.32^5}=\frac{35^5.\left(3^2\right)^3.\left(2^3\right)^5}{\left(3^4\right)^4.\left(2^5\right)^5}=\frac{35^5.3^6.2^{15}}{3^{16}.2^{25}}=\frac{35^5}{3^{10}.2^{10}}=\frac{35^5}{6^{10}}\)
c) \(\frac{48^5.18^2}{81^2.34^4}=\frac{\left(2^4.3\right)^5.\left(2.3^2\right)^2}{\left(3^4\right)^2.\left(2.17\right)^4}=\frac{2^{20}.3^5.2^2.3^4}{3^8.2^4.17^4}=\frac{2^{22}.3^9}{3^8.2^4.17^4}=\frac{2^{18}.3}{17^4}\)
d) \(\frac{54^7.27^3.16^2}{243^2.64^3}=\frac{\left(2.3^3\right)^7.\left(3^3\right)^3.\left(2^4\right)^2}{\left(3^5\right)^2.\left(2^6\right)^3}=\frac{2^7.3^{21}.3^9.2^8}{3^{10}.2^{18}}=\frac{2^{15}.3^{30}}{3^{10}.2^{18}}=\frac{3^{20}}{2^3}\)
\(9^x:3^{x+9}=27\)
\(9^x=27\cdot3^{x+9}\)
\(\left(3^2\right)^x=3^3\cdot3^{x+9}\)
\(3^{2x}=3^{x+12}\)
\(\Rightarrow2x=x+12\)
\(2x-x=12\)
\(x=12\)
\(4^{x+y}:2^{5y}=32\)
\(4^{12+y}=32\cdot2^{5y}\)
\(\left(2^2\right)^{12+y}=2^5\cdot2^{5y}\)
\(2^{24+2y}=2^{5+5y}\)
\(24+2y=5+5y\)
\(24-5=5y-2y\)
\(3y=19\)
\(y=19:3\)
\(y=\frac{19}{3}\)
Vậy \(x=12;y=\frac{19}{3}\)