Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm sai cả lũ 1 cách 10 đâu phải là 10 đơn vị đâu.
Giải : Trong dãy trên , từ số 10 đến số 10000 có số số hạng là :
( 10000 -10 ) : 10 + 1 =1000 số
Tổng các số từ 10 đến 10000 trong dãy trên là :
( 10000 + 10 ) x 1000 : 2 = 5005000
Vậy tổng dãy trên là :
5005000 + 1 = 5005001
Đáp số : 5005001
K mk nha
1/10 + 2/20 + 3/30 + 4/40 + 5/50 + 6/60 + 7/70 + 8/80 + 9/90
= 1/10 + 1/10 + 1/10 +1/10 + 1/10 + 1/10 + 1/10 + 1/10 + 1/10
= 1/10 x 9
= 9/10
1 đúng nha, thks
\(\frac{1}{10}+\frac{4}{20}+\frac{9}{30}+...+\frac{81}{90}\)
\(=\frac{1}{10}+\frac{2}{10}+\frac{3}{10}+...+\frac{9}{10}\)
\(=\frac{\left(9+1\right)\left(9-1+1\right):2}{10}\)
\(=\frac{10.9:2}{10}=4,5\)
=\(\frac{1}{10}+\frac{4}{20}+\frac{9}{30}+...+\frac{81}{90}\)
= \(\frac{1}{10}+\frac{2}{10}+\frac{3}{10}+...\frac{9}{10}\)
= \(\frac{\left(9+1\right)\times\left(9-1+1\right):2}{10}\)
= \(\frac{10\times9:2}{10}\)
= 4,5
ĐS:.........................
#Châu's ngốc
\(\frac{1}{10}+\frac{4}{20}+\frac{9}{30}+....+\frac{81}{90}\)
\(=\frac{1}{10}+\frac{2}{10}+\frac{3}{10}+...+\frac{9}{10}\)
\(=\frac{\left(1+2+3+.....+9\right)}{10}\)
\(=\frac{45}{10}=\frac{9}{2}\)
\(S=\frac{1}{10}+\frac{2^2}{20}+\frac{3^2}{30}+....+\frac{9^2}{90}=\frac{1}{10}+\frac{2}{10}+...+\frac{9}{10}=\frac{45}{10}=\frac{9}{2}\)
a; \(\dfrac{1}{4}\) + \(\dfrac{2}{5}\) + \(\dfrac{6}{8}\) + \(\dfrac{9}{15}\) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{6}{8}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{9}{15}\)) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{3}{5}\)) + 8
= 1 + 1 + 8
= 2 + 8
= 10
b; \(\dfrac{1}{2}\) + \(\dfrac{2}{4}\) + \(\dfrac{3}{6}\) + \(\dfrac{4}{8}\) + \(\dfrac{5}{10}\) + \(\dfrac{6}{12}\) + \(\dfrac{7}{14}\) + \(\dfrac{8}{16}\) + \(\dfrac{10}{20}\)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x (\(\dfrac{2}{2}\) + \(\dfrac{3}{3}\) + \(\dfrac{4}{4}\) + \(\dfrac{5}{5}\)+ \(\dfrac{6}{6}+\dfrac{7}{7}+\dfrac{8}{8}\) + \(\dfrac{10}{10}\))
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x (1 + 1 +1 + 1+ 1+ 1+ 1 +1)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x 1 x 8
= \(\dfrac{1}{2}\) + \(\)\(\dfrac{1}{2}\) x 8
= \(\dfrac{1}{2}\) + 4
= \(\dfrac{9}{2}\)
a; \(\dfrac{1}{4}\) + \(\dfrac{2}{5}\) + \(\dfrac{6}{8}\) + \(\dfrac{9}{15}\) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{6}{8}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{9}{15}\)) + 8
= (\(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{3}{5}\)) + 8
= 1 + 1 + 8
= 2 + 8
= 10
b; \(\dfrac{1}{2}\) + \(\dfrac{2}{4}\) + \(\dfrac{3}{6}\) + \(\dfrac{4}{8}\) + \(\dfrac{5}{10}\) + \(\dfrac{6}{12}\) + \(\dfrac{7}{14}\) + \(\dfrac{8}{16}\) + \(\dfrac{9}{18}\) + \(\dfrac{10}{20}\)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\)
= \(\dfrac{1}{2}\) x 10
= 5
\(\frac{1}{10}+\frac{2}{20}+\frac{3}{30}+\frac{4}{40}+\frac{5}{50}+\frac{6}{60}+\frac{7}{70}+\frac{8}{80}+\frac{9}{90}\)
=\(\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+\frac{1}{10}\)
=\(\frac{9}{10}\)
\(\frac{1}{10}+\frac{2}{20}+\frac{3}{30}+\frac{4}{40}+\frac{5}{50}+\frac{6}{60}+\frac{7}{70}+\frac{8}{80}+\frac{9}{90}=\frac{1}{10}+\frac{1}{10}+....+\frac{1}{10}=\frac{9}{10}\)
= 9818
\(=9818\)