K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 11 2018

Lời giải:

Đặt \(2^{\sqrt{x}}=a(a\geq 1)\)

Ta có: \(8^{\sqrt{x}}-3.4^{\sqrt{x}}+2^{\sqrt{x}}=0\)

\(\Leftrightarrow (2^{\sqrt{x}})^3-3(2^{\sqrt{x}})^2+2^{\sqrt{x}}=0\)

\(\Leftrightarrow a^3-3a^2+a=0\)

\(\Leftrightarrow a(a^2-3a+1)=0\)

\(\Rightarrow a=\frac{3+\sqrt{5}}{2}\) do $a\geq 1$

Khi đó: \(\sqrt{x}=\log_2(\frac{3+\sqrt{5}}{2})\Rightarrow x=\left(\log_2(\frac{3+\sqrt{5}}{2})\right)^2\)

AH
Akai Haruma
Giáo viên
29 tháng 10 2017

Lời giải:

Câu 1:

\(5^{2x}=3^{2x}+2.5^x+2.3^x\)

\(\Leftrightarrow 5^{2x}-2.5^x+1=3^{2x}+2.3^x+1\)

\(\Leftrightarrow (5^x-1)^2=(3^x+1)^2\)

\(\Leftrightarrow (5^x-1-3^x-1)(5^x-1+3^x+1)=0\)

\(\Leftrightarrow (5^x-3^x-2)(5^x+3^x)=0\)

Vì \(3^x,5^x>0\Rightarrow 3^x+5^x>0\), do đó từ pt trên ta có \(5^x-3^x=2\)

\(\Leftrightarrow 5^x=3^x+2\)

TH1: \(x>1\)

\(\Rightarrow 5^x=3^x+2< 3^x+2^x\)

\(\Leftrightarrow 1< \left(\frac{3}{5}\right)^x+\left(\frac{2}{5}\right)^x\)

Vì bản thân \(\frac{2}{5},\frac{3}{5}<1\), và \(x>1\Rightarrow \left(\frac{2}{5}\right)^x< \frac{2}{5};\left(\frac{3}{5}\right)^x<\frac{3}{5}\)

\(\Rightarrow \left(\frac{2}{5}\right)^x+\left(\frac{3}{5}\right)^x< 1\) (vô lý)

TH2: \(x<1 \Rightarrow 5^x=3^x+2> 3^x+2^x\)

\(\Leftrightarrow 1>\left(\frac{3}{5}\right)^x+\left(\frac{2}{5}\right)^x\)

Vì \(\frac{2}{5};\frac{3}{5}<1; x<1\Rightarrow \left(\frac{3}{5}\right)^x> \frac{3}{5}; \left(\frac{2}{5}\right)^x>\frac{2}{5}\Rightarrow \left(\frac{2}{5}\right)^x+\left(\frac{3}{5}\right)^x>1\)

(vô lý)

Vậy \(x=1\)

AH
Akai Haruma
Giáo viên
29 tháng 10 2017

Câu 2:

Ta có \(1+6.2^x+3.5^x=10^x\)

\(\Leftrightarrow \frac{1}{10^x}+6.\frac{1}{5^x}+3.\frac{1}{2^x}=1\)

\(\Leftrightarrow 10^{-x}+6.5^{-x}+3.2^{-x}=1\)

Ta thấy, đạo hàm vế trái là một giá trị âm, vế phải là hàm hằng có đạo hàm bằng 0, do đó pt có nghiệm duy nhất.

Thấy \(x=2\) thỏa mãn nên nghiệm duy nhất của pt là x=2

Câu 3:

\(6(\sqrt{5}+1)^x-2(\sqrt{5}-1)^x=2^{x+2}\)

Đặt \(\sqrt{5}+1=a\), khi đó sử dụng định lý Viete đảo ta duy ra a là nghiệm của phương trình \(a^2-2a-4=0\)

Mặt khác, từ pt ban đầu suy ra \(6.a^x-2\left(\frac{4}{a}\right)^x=2^{x+2}\)

\(\Leftrightarrow 6.a^{2x}-2^{x+2}a^x-2^{2x+1}=0\)

\(\Leftrightarrow 2(a^x-2^x)^2+4(a^{2x}-2^{2x})=0\)

\(\Leftrightarrow 2(a^x-2^x)^2+4(a^x-2^x)(a^x+2^x)=0\)

\(\Leftrightarrow (a^x-2^x)(6a^x+2^{x+1})=0\)

Dễ thấy \(6a^x+2^{x+1}>0\forall x\in\mathbb{R}\Rightarrow a^x-2^x=0\)

\(\Leftrightarrow (\sqrt{5}+1)^x=2^x\Leftrightarrow x=0\)

các bạn giải giúp mình mấy câu bất đẳng thức này với 1) tìm GTLN a) y=(6x+3)(5-2x) \(\dfrac{-1}{2}\le x\le\dfrac{5}{2}\) b)y=\(\dfrac{x}{x^2+2}\) x>0 2)cho 3 số thực a,b,c thỏa mãn \(a\ge9,b\ge4,c\ge1\). CM :\(ab\sqrt{c-1}+bc\sqrt{a-9}+ca\sqrt{b-4}\le\dfrac{11abc}{12}\) 3)cho x,y>0 thỏa mãn x+y=2 . CM a)xy(x2+y2)\(\le2\) b)x3y3(x3+y3)\(\le2\) 4) x,y là các số thực thỏa mãn \(0\le x\le3,0\le y\le4\) tìm GTLN A= (3-x)(4-y)(2x+3y) 5)...
Đọc tiếp

các bạn giải giúp mình mấy câu bất đẳng thức này với

1) tìm GTLN

a) y=(6x+3)(5-2x) \(\dfrac{-1}{2}\le x\le\dfrac{5}{2}\)

b)y=\(\dfrac{x}{x^2+2}\) x>0

2)cho 3 số thực a,b,c thỏa mãn \(a\ge9,b\ge4,c\ge1\). CM :\(ab\sqrt{c-1}+bc\sqrt{a-9}+ca\sqrt{b-4}\le\dfrac{11abc}{12}\)

3)cho x,y>0 thỏa mãn x+y=2 . CM

a)xy(x2+y2)\(\le2\)

b)x3y3(x3+y3)\(\le2\)

4) x,y là các số thực thỏa mãn \(0\le x\le3,0\le y\le4\)

tìm GTLN A= (3-x)(4-y)(2x+3y)

5) biết x,y,z,u\(\ge0\)và 2x+xy+z+yzu=1

tìm GTLN của P=x2y2z2u

6)cho a,b,c>0 và a+b+c=3 .CMR:\(a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\le5\)

7) cho 3 số dương x,y,z có tổng bằng 1 .CMR : \(\sqrt{\dfrac{xy}{xy+z}}+\sqrt{\dfrac{yz}{yz+x}}+\sqrt{\dfrac{xz}{xz+y}}\le\dfrac{3}{2}\)

8)cho 3 số dương a,b,c có tổng bằng 3 .

tìm GTLN của S=\(\dfrac{bc}{\sqrt{3a+bc}}+\dfrac{ca}{\sqrt{3b+ca}}+\dfrac{ab}{\sqrt{3c+ab}}\)

ko cần làm chi tiết lắm chỉ cần hướng dẫn là đc zùi

3
17 tháng 2 2019

\(8,\dfrac{bc}{\sqrt{3a+bc}}=\dfrac{bc}{\sqrt{\left(a+b+c\right)a+bc}}=\dfrac{bc}{\sqrt{a^2+ab+ac+bc}}\)

\(=\dfrac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{\dfrac{b}{a+b}+\dfrac{c}{a+c}}{2}\)

Tương tự cho các số còn lại rồi cộng vào sẽ được

\(S\le\dfrac{3}{2}\)

Dấu "=" khi a=b=c=1

Vậy

17 tháng 2 2019

\(7,\sqrt{\dfrac{xy}{xy+z}}=\sqrt{\dfrac{xy}{xy+z\left(x+y+z\right)}}=\sqrt{\dfrac{xy}{xy+xz+yz+z^2}}\)

\(=\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}\le\dfrac{\dfrac{x}{x+z}+\dfrac{y}{y+z}}{2}\)

Cmtt rồi cộng vào ta đc đpcm

Dấu "=" khi x = y = z = 1/3

NV
24 tháng 11 2019

Không phải tất cả các câu đều dùng nguyên hàm từng phần được đâu nhé, 1 số câu phải dùng đổi biến, đặc biệt những câu liên quan đến căn thức thì đừng dại mà nguyên hàm từng phần (vì càng nguyên hàm từng phần biểu thức nó càng phình to ra chứ không thu gọn lại, vĩnh viễn không ra kết quả đâu)

a/ \(I=\int\frac{9x^2}{\sqrt{1-x^3}}dx\)

Đặt \(u=\sqrt{1-x^3}\Rightarrow u^2=1-x^3\Rightarrow2u.du=-3x^2dx\)

\(\Rightarrow9x^2dx=-6udu\)

\(\Rightarrow I=\int\frac{-6u.du}{u}=-6\int du=-6u+C=-6\sqrt{1-x^3}+C\)

b/ Đặt \(u=1+\sqrt{x}\Rightarrow du=\frac{dx}{2\sqrt{x}}\Rightarrow2du=\frac{dx}{\sqrt{x}}\)

\(\Rightarrow I=\int\frac{2du}{u^3}=2\int u^{-3}du=-u^{-2}+C=-\frac{1}{u^2}+C=-\frac{1}{\left(1+\sqrt{x}\right)^2}+C\)

c/ Đặt \(u=\sqrt{2x+3}\Rightarrow u^2=2x\Rightarrow\left\{{}\begin{matrix}x=\frac{u^2}{2}\\dx=u.du\end{matrix}\right.\)

\(\Rightarrow I=\int\frac{u^2.u.du}{2u}=\frac{1}{2}\int u^2du=\frac{1}{6}u^3+C=\frac{1}{6}\sqrt{\left(2x+3\right)^3}+C\)

NV
24 tháng 11 2019

d/ Đặt \(u=\sqrt{1+e^x}\Rightarrow u^2-1=e^x\Rightarrow2u.du=e^xdx\)

\(\Rightarrow I=\int\frac{\left(u^2-1\right).2u.du}{u}=2\int\left(u^2-1\right)du=\frac{2}{3}u^3-2u+C\)

\(=\frac{2}{3}\sqrt{\left(1+e^x\right)^2}-2\sqrt{1+e^x}+C\)

e/ Đặt \(u=\sqrt[3]{1+lnx}\Rightarrow u^3=1+lnx\Rightarrow3u^2du=\frac{dx}{x}\)

\(\Rightarrow I=\int u.3u^2du=3\int u^3du=\frac{3}{4}u^4+C=\frac{3}{4}\sqrt[3]{\left(1+lnx\right)^4}+C\)

f/ \(I=\int cosx.sin^3xdx\)

Đặt \(u=sinx\Rightarrow du=cosxdx\)

\(\Rightarrow I=\int u^3du=\frac{1}{4}u^4+C=\frac{1}{4}sin^4x+C\)

26 tháng 11 2018

\(\left(2\right)^x-2.2^{2x}-3.2^{x-1}=0\)
Đặt \(2^x\) = t (t>0)
=> \(t-2t^2-\dfrac{3t}{2}=0\)
=> \(\left[{}\begin{matrix}t=\dfrac{-1}{4}\\t=0\end{matrix}\right.\)( loại)

26 tháng 11 2018

dưới mình giải nhầm kia phải là \(3.2^x\) sau đó bạn đặt t giải ra t => x

4 tháng 2 2016

bạn nhập pt vào máy tính rồi nhấn shift slove = ,sẽ ra nghiệm là 0,5 .lấy 0,5 thể vào căn thức rồi nhân liên hợp là ok

NV
30 tháng 1 2019

Do \(\left(\dfrac{2}{\sqrt{5}}\right)< 1\)

\(\left(\dfrac{2}{\sqrt{5}}\right)^{\dfrac{1}{x}}< \left(\dfrac{2}{\sqrt{5}}\right)^{2017}\Leftrightarrow\dfrac{1}{x}>2017\Leftrightarrow0< x< \dfrac{1}{2017}\)

\(\Rightarrow S=\left(0;\dfrac{1}{2017}\right)\)

NV
18 tháng 11 2018

Viết lại đề cho rõ ràng bạn ơi, không phiên dịch được :D

NV
19 tháng 11 2018

\(2^{3x}-2.2^{2x}-3.2^x=0\Rightarrow2^x\left(2^{2x}-2.2^x-3\right)=0\)

\(\Rightarrow2^x\left(2^x+1\right)\left(2^x-3\right)=0\) \(\Rightarrow\left[{}\begin{matrix}2^x=0\left(vn\right)\\2^x+1=0\left(vn\right)\\2^x=3\Rightarrow x=log_23\end{matrix}\right.\)

Vậy nghiệm của pt là \(x=log_23\)